Deep Learning

eBook Download

BOOK EXCERPT:

An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning tools Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures Practical discussions of recurrent neural networks and non-supervised approaches to deep learning Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Product Details :

Genre : Computers
Author : Manel Martinez-Ramon
Publisher : John Wiley & Sons
Release : 2024-07-08
File : 421 Pages
ISBN-13 : 9781119861881


Deep Learning

eBook Download

BOOK EXCERPT:

DEEP LEARNING A concise and practical exploration of key topics and applications in data science In Deep Learning: From Big Data to Artificial Intelligence with R, expert researcher Dr. Stéphane Tufféry delivers an insightful discussion of the applications of deep learning and big data that focuses on practical instructions on various software tools and deep learning methods relying on three major libraries: MXNet, PyTorch, and Keras-TensorFlow. In the book, numerous, up-to-date examples are combined with key topics relevant to modern data scientists, including processing optimization, neural network applications, natural language processing, and image recognition. This is a thoroughly revised and updated edition of a book originally released in French, with new examples and methods included throughout. Classroom-tested and intuitively organized, Deep Learning: From Big Data to Artificial Intelligence with R offers complimentary access to a companion website that provides R and Python source code for the examples offered in the book. Readers will also find: A thorough introduction to practical deep learning techniques with explanations and examples for various programming libraries Comprehensive explorations of a variety of applications for deep learning, including image recognition and natural language processing Discussions of the theory of deep learning, neural networks, and artificial intelligence linked to concrete techniques and strategies commonly used to solve real-world problems Perfect for graduate students studying data science, big data, deep learning, and artificial intelligence, Deep Learning: From Big Data to Artificial Intelligence with R will also earn a place in the libraries of data science researchers and practicing data scientists.

Product Details :

Genre : Computers
Author : Stephane Tuffery
Publisher : John Wiley & Sons
Release : 2022-11-22
File : 548 Pages
ISBN-13 : 9781119845034


Advances In Electromagnetics Empowered By Artificial Intelligence And Deep Learning

eBook Download

BOOK EXCERPT:

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning Authoritative reference on the state of the art in the field with additional coverage of important foundational concepts Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning presents cutting-edge research advances in the rapidly growing areas in optical and RF electromagnetic device modeling, simulation, and inverse-design. The text provides a comprehensive treatment of the field on subjects ranging from fundamental theoretical principles and new technological developments to state-of-the-art device design, as well as examples encompassing a wide range of related sub-areas. The content of the book covers all-dielectric and metallodielectric optical metasurface deep learning-accelerated inverse-design, deep neural networks for inverse scattering, applications of deep learning for advanced antenna design, and other related topics. To aid in reader comprehension, each chapter contains 10-15 illustrations, including prototype photos, line graphs, and electric field plots. Contributed to by leading research groups in the field, sample topics covered in Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning include: Optical and photonic design, including generative machine learning for photonic design and inverse design of electromagnetic systems RF and antenna design, including artificial neural networks for parametric electromagnetic modeling and optimization and analysis of uniform and non-uniform antenna arrays Inverse scattering, target classification, and other applications, including deep learning for high contrast inverse scattering of electrically large structures Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning is a must-have resource on the topic for university faculty, graduate students, and engineers within the fields of electromagnetics, wireless communications, antenna/RF design, and photonics, as well as researchers at large defense contractors and government laboratories.

Product Details :

Genre : Technology & Engineering
Author : Sawyer D. Campbell
Publisher : John Wiley & Sons
Release : 2023-08-03
File : 596 Pages
ISBN-13 : 9781119853916


Handbook Of Deep Learning In Biomedical Engineering

eBook Download

BOOK EXCERPT:

Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography

Product Details :

Genre : Science
Author : Valentina Emilia Balas
Publisher : Academic Press
Release : 2020-11-12
File : 322 Pages
ISBN-13 : 9780128230473


Advances In Artificial Intelligence Big Data And Algorithms

eBook Download

BOOK EXCERPT:

Computers and automation have revolutionized the lives of most people in the last two decades, and terminology such as algorithms, big data and artificial intelligence have become part of our everyday discourse. This book presents the proceedings of CAIBDA 2023, the 3rd International Conference on Artificial Intelligence, Big Data and Algorithms, held from 16 - 18 June 2023 as a hybrid conference in Zhengzhou, China. The conference provided a platform for some 200 participants to discuss the theoretical and computational aspects of research in artificial intelligence, big data and algorithms, reviewing the present status and future perspectives of the field. A total of 362 submissions were received for the conference, of which 148 were accepted following a thorough double-blind peer review. Topics covered at the conference included artificial intelligence tools and applications; intelligent estimation and classification; representation formats for multimedia big data; high-performance computing; and mathematical and computer modeling, among others. The book provides a comprehensive overview of this fascinating field, exploring future scenarios and highlighting areas where new ideas have emerged over recent years. It will be of interest to all those whose work involves artificial intelligence, big data and algorithms.

Product Details :

Genre : Computers
Author : G. Grigoras
Publisher : IOS Press
Release : 2023-12-19
File : 1224 Pages
ISBN-13 : 9781643684451


Opinion Mining In Information Retrieval

eBook Download

BOOK EXCERPT:

This book discusses in detail the latest trends in sentiment analysis,focusing on “how online reviews and feedback reflect the opinions of users and have led to a major shift in the decision-making process at organizations.” Social networking has become essential in today’s society. In the past, people’s decisions to buy certain products (and companies’ efforts to sell them) were largely based on advertisements, surveys, focus groups, consultants, and the opinions of friends and relatives. But now this is no longer limited to one’s circle of friends, family or small surveys;it has spread globally to online social media in the form of blogs, posts, tweets, social networking sites, review sites and so on. Though not always easy, the transition from surveys to social media is certainly lucrative. Business analytical reports have shown that many organizations have improved their sales, marketing and strategy, setting up new policies and making decisions based on opinion mining techniques.

Product Details :

Genre : Technology & Engineering
Author : Surbhi Bhatia
Publisher : Springer Nature
Release : 2020-05-19
File : 119 Pages
ISBN-13 : 9789811550430


Intelligent Systems And Applications In Computer Vision

eBook Download

BOOK EXCERPT:

The book comprehensively covers a wide range of evolutionary computer vision methods and applications, feature selection and extraction for training and classification, and metaheuristic algorithms in image processing. It further discusses optimized image segmentation, its analysis, pattern recognition, and object detection. Features: Discusses machine learning-based analytics such as GAN networks, autoencoders, computational imaging, and quantum computing Covers deep learning algorithms in computer vision Showcases novel solutions such as multi-resolution analysis in imaging processing, and metaheuristic algorithms for tackling challenges associated with image processing Highlight optimization problems such as image segmentation and minimized feature design vector Presents platform and simulation tools for image processing and segmentation The book aims to get the readers familiar with the fundamentals of computational intelligence as well as the recent advancements in related technologies like smart applications of digital images, and other enabling technologies from the context of image processing and computer vision. It further covers important topics such as image watermarking, steganography, morphological processing, and optimized image segmentation. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in fields including electrical engineering, electronics, communications engineering, and computer engineering.

Product Details :

Genre : Computers
Author : Nitin Mittal
Publisher : CRC Press
Release : 2023-11-02
File : 341 Pages
ISBN-13 : 9781000985801


Emerging Trends In Ict For Sustainable Development

eBook Download

BOOK EXCERPT:

This book features original research and recent advances in ICT fields related to sustainable development. Based the International Conference on Networks, Intelligent systems, Computing & Environmental Informatics for Sustainable Development, held in Marrakech in April 2020, it features peer-reviewed chapters authored by prominent researchers from around the globe. As such it is an invaluable resource for courses in computer science, electrical engineering and urban sciences for sustainable development. This book covered topics including • Green Networks • Artificial Intelligence for Sustainability• Environment Informatics• Computing Technologies

Product Details :

Genre : Computers
Author : Mohamed Ben Ahmed
Publisher : Springer Nature
Release : 2021-01-23
File : 406 Pages
ISBN-13 : 9783030534400


Soft Computing In Data Science

eBook Download

BOOK EXCERPT:

This book constitutes the refereed proceedings of the 6th International Conference on Soft Computing in Data Science, SCDS 2021, which was held virtually in November 2021. The 31 revised full papers presented were carefully reviewed and selected from 79 submissions. The papers are organized in topical sections on ​​AI techniques and applications; data analytics and technologies; data mining and image processing; machine & statistical learning.

Product Details :

Genre : Computers
Author : Azlinah Mohamed
Publisher : Springer Nature
Release : 2021-10-28
File : 450 Pages
ISBN-13 : 9789811673344


Disruptive Technologies In Computing And Communication Systems

eBook Download

BOOK EXCERPT:

The 1st International Conference on Disruptive Technologies in Computing and Communication Systems (ICDTCCS - 2023) has received overwhelming response on call for papers and over 119 papers from all over globe were received. We must appreciate the untiring contribution of the members of the organizing committee and Reviewers Board who worked hard to review the papers and finally a set of 69 technical papers were recommended for publication in the conference proceedings. We are grateful to the Chief Guest Prof Atul Negi, Dean – Hyderabad Central University, Guest of Honor Justice John S Spears -Professor University of West Los Angeles CA, and Keynote Speakers Prof A. Govardhan, Rector JNTU H, Prof A.V.Ramana Registrar – S.K.University, Dr Tara Bedi Trinity College Dublin, Prof C.R.Rao – Professor University of Hyderabad, Mr Peddigari Bala, Chief Innovation Officer TCS, for kindly accepting the invitation to deliver the valuable speech and keynote address in the same. We would like to convey our gratitude to Prof D. Asha Devi - SNIST, Dr B.Deevena Raju – ICFAI University, Dr Nekuri Naveen - HCU, Dr A.Mahesh Babu - KLH, Dr K.Hari Priya – Anurag University and Prof Kameswara Rao –SRK Bhimavaram for giving consent as session Chair. We are also thankful to our Chairman Sri Teegala Krishna Reddy, Secretary Dr. T.Harinath Reddy and Sri T. Amarnath Reddy for providing funds to organize the conference. We are also thankful to the contributors whose active interest and participation to ICDTCCS - 2023 has made the conference a glorious success. Finally, so many people have extended their helping hands in many ways for organizing the conference successfully. We are especially thankful to them.

Product Details :

Genre : Computers
Author : K. Venkata Murali Mohan
Publisher : CRC Press
Release : 2024-06-24
File : 459 Pages
ISBN-13 : 9781040045916