Challenges And Applications For Implementing Machine Learning In Computer Vision

eBook Download

BOOK EXCERPT:

Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.

Product Details :

Genre : Computers
Author : Kashyap, Ramgopal
Publisher : IGI Global
Release : 2019-10-04
File : 318 Pages
ISBN-13 : 9781799801849


Computer Vision And Machine Learning In Agriculture Volume 3

eBook Download

BOOK EXCERPT:

This book is as an extension of the previous two volumes on “Computer Vision and Machine Learning in Agriculture”. This volume 3 discusses solutions to the problems of agricultural production by rendering advanced machine learning including deep learning tools and techniques. The book contains 13 chapters that focus on in-depth research outputs in precision agriculture, crop farming, horticulture, floriculture, vertical farming, animal husbandry, disease detection, plant recognition, production yield, product quality, defect assessment, and overall automation through robots and drones. The topics covered in the current volume, along with the previous volumes, are comprehensive literature for both beginners and experienced in this domain.

Product Details :

Genre : Technology & Engineering
Author : Jagdish Chand Bansal
Publisher : Springer Nature
Release : 2023-07-31
File : 215 Pages
ISBN-13 : 9789819937547


Deep Learning In Computer Vision

eBook Download

BOOK EXCERPT:

Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Product Details :

Genre : Computers
Author : Mahmoud Hassaballah
Publisher : CRC Press
Release : 2020-03-23
File : 275 Pages
ISBN-13 : 9781351003803


Deep Learning For Computer Vision

eBook Download

BOOK EXCERPT:

Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.

Product Details :

Genre : Computers
Author : Rajalingappaa Shanmugamani
Publisher : Packt Publishing Ltd
Release : 2018-01-23
File : 304 Pages
ISBN-13 : 9781788293358


Elements Of Deep Learning For Computer Vision

eBook Download

BOOK EXCERPT:

Conceptualizing deep learning in computer vision applications using PyTorch and Python libraries. KEY FEATURES ● Covers a variety of computer vision projects, including face recognition and object recognition such as Yolo, Faster R-CNN. ● Includes graphical representations and illustrations of neural networks and teaches how to program them. ● Includes deep learning techniques and architectures introduced by Microsoft, Google, and the University of Oxford. DESCRIPTION Elements of Deep Learning for Computer Vision gives a thorough understanding of deep learning and provides highly accurate computer vision solutions while using libraries like PyTorch. This book introduces you to Deep Learning and explains all the concepts required to understand the basic working, development, and tuning of a neural network using Pytorch. The book then addresses the field of computer vision using two libraries, including the Python wrapper/version of OpenCV and PIL. After establishing and understanding both the primary concepts, the book addresses them together by explaining Convolutional Neural Networks(CNNs). CNNs are further elaborated using top industry standards and research to explain how they provide complicated Object Detection in images and videos, while also explaining their evaluation. Towards the end, the book explains how to develop a fully functional object detection model, including its deployment over APIs. By the end of this book, you are well-equipped with the role of deep learning in the field of computer vision along with a guided process to design deep learning solutions. WHAT YOU WILL LEARN ● Get to know the mechanism of deep learning and how neural networks operate. ● Learn to develop a highly accurate neural network model. ● Access to rich Python libraries to address computer vision challenges. ● Build deep learning models using PyTorch and learn how to deploy using the API. ● Learn to develop Object Detection and Face Recognition models along with their deployment. WHO THIS BOOK IS FOR This book is for the readers who aspire to gain a strong fundamental understanding of how to infuse deep learning into computer vision and image processing applications. Readers are expected to have intermediate Python skills. No previous knowledge of PyTorch and Computer Vision is required. TABLE OF CONTENTS 1. An Introduction to Deep Learning 2. Supervised Learning 3. Gradient Descent 4. OpenCV with Python 5. Python Imaging Library and Pillow 6. Introduction to Convolutional Neural Networks 7. GoogLeNet, VGGNet, and ResNet 8. Understanding Object Detection 9. Popular Algorithms for Object Detection 10. Faster RCNN with PyTorch and YoloV4 with Darknet 11. Comparing Algorithms and API Deployment with Flask 12. Applications in Real World

Product Details :

Genre : Computers
Author : Bharat Sikka
Publisher : BPB Publications
Release : 2021-06-24
File : 224 Pages
ISBN-13 : 9789390684687


Advanced Methods And Deep Learning In Computer Vision

eBook Download

BOOK EXCERPT:

Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses

Product Details :

Genre : Technology & Engineering
Author : E. R. Davies
Publisher : Academic Press
Release : 2021-11-09
File : 584 Pages
ISBN-13 : 9780128221495


Machine Learning Crash Course For Engineers

eBook Download

BOOK EXCERPT:

​Machine Learning Crash Course for Engineers is a reader-friendly introductory guide to machine learning algorithms and techniques for students, engineers, and other busy technical professionals. The book focuses on the application aspects of machine learning, progressing from the basics to advanced topics systematically from theory to applications and worked-out Python programming examples. It offers highly illustrated, step-by-step demonstrations that allow readers to implement machine learning models to solve real-world problems. This powerful tutorial is an excellent resource for those who need to acquire a solid foundational understanding of machine learning quickly.

Product Details :

Genre : Computers
Author : Eklas Hossain
Publisher : Springer Nature
Release : 2023-12-26
File : 465 Pages
ISBN-13 : 9783031469909


Applications Of Machine Learning And Artificial Intelligence In Education

eBook Download

BOOK EXCERPT:

Modes and models of learning and instruction have shown a significant shift from yesterday's conventional learning and teaching given this era’s current educational and social contexts. Learners are no longer learning and communicating with human-generated, computed, and mediated—or traditional—learning and instructional practices, paving the way for machine-facilitated communication, learning, and teaching tools. Learning and instruction, communication and information exchange, as well as gathering, coding, analyzing, and synthesizing data have proven to be in need of even more innovative technology-moderated tools. Applications of Machine Learning and Artificial Intelligence in Education focuses on the parameters of remote learning, machine learning, deep learning, and artificial intelligence under 21st-century learning and instructional contexts. Covering topics such as data coding and social networking technology, it is ideal for learners with an interest in the deep learning discipline, educators, educational technologists, instructional designers, and data evaluators, as well as special interest groups (SGIs) in the discipline.

Product Details :

Genre : Education
Author : Khadimally, Seda
Publisher : IGI Global
Release : 2022-02-18
File : 271 Pages
ISBN-13 : 9781799877783


Genomics At The Nexus Of Ai Computer Vision And Machine Learning

eBook Download

BOOK EXCERPT:

The book provides a comprehensive understanding of cutting-edge research and applications at the intersection of genomics and advanced AI techniques and serves as an essential resource for researchers, bioinformaticians, and practitioners looking to leverage genomics data for AI-driven insights and innovations. The book encompasses a wide range of topics, starting with an introduction to genomics data and its unique characteristics. Each chapter unfolds a unique facet, delving into the collaborative potential and challenges that arise from advanced technologies. It explores image analysis techniques specifically tailored for genomic data. It also delves into deep learning showcasing the power of convolutional neural networks (CNN) and recurrent neural networks (RNN) in genomic image analysis and sequence analysis. Readers will gain practical knowledge on how to apply deep learning techniques to unlock patterns and relationships in genomics data. Transfer learning, a popular technique in AI, is explored in the context of genomics, demonstrating how knowledge from pre-trained models can be effectively transferred to genomic datasets, leading to improved performance and efficiency. Also covered is the domain adaptation techniques specifically tailored for genomics data. The book explores how genomics principles can inspire the design of AI algorithms, including genetic algorithms, evolutionary computing, and genetic programming. Additional chapters delve into the interpretation of genomic data using AI and ML models, including techniques for feature importance and visualization, as well as explainable AI methods that aid in understanding the inner workings of the models. The applications of genomics in AI span various domains, and the book explores AI-driven drug discovery and personalized medicine, genomic data analysis for disease diagnosis and prognosis, and the advancement of AI-enabled genomic research. Lastly, the book addresses the ethical considerations in integrating genomics with AI, computer vision, and machine learning. Audience The book will appeal to biomedical and computer/data scientists and researchers working in genomics and bioinformatics seeking to leverage AI, computer vision, and machine learning for enhanced analysis and discovery; healthcare professionals advancing personalized medicine and patient care; industry leaders and decision-makers in biotechnology, pharmaceuticals, and healthcare industries seeking strategic insights into the integration of genomics and advanced technologies.

Product Details :

Genre : Computers
Author : Shilpa Choudhary
Publisher : John Wiley & Sons
Release : 2024-11-05
File : 564 Pages
ISBN-13 : 9781394268801


Practical Computer Vision Applications Using Deep Learning With Cnns

eBook Download

BOOK EXCERPT:

Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using PythonFollow a deep learning project from conception to production using TensorFlowUse NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.

Product Details :

Genre : Computers
Author : Ahmed Fawzy Gad
Publisher : Apress
Release : 2018-12-05
File : 421 Pages
ISBN-13 : 9781484241677