Machine Learning Engineering In Action

eBook Download

BOOK EXCERPT:

Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you’ll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You’ll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You’ll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author’s extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer. Table of Contents PART 1 AN INTRODUCTION TO MACHINE LEARNING ENGINEERING 1 What is a machine learning engineer? 2 Your data science could use some engineering 3 Before you model: Planning and scoping a project 4 Before you model: Communication and logistics of projects 5 Experimentation in action: Planning and researching an ML project 6 Experimentation in action: Testing and evaluating a project 7 Experimentation in action: Moving from prototype to MVP 8 Experimentation in action: Finalizing an MVP with MLflow and runtime optimization PART 2 PREPARING FOR PRODUCTION: CREATING MAINTAINABLE ML 9 Modularity for ML: Writing testable and legible code 10 Standards of coding and creating maintainable ML code 11 Model measurement and why it’s so important 12 Holding on to your gains by watching for drift 13 ML development hubris PART 3 DEVELOPING PRODUCTION MACHINE LEARNING CODE 14 Writing production code 15 Quality and acceptance testing 16 Production infrastructure

Product Details :

Genre : Computers
Author : Ben Wilson
Publisher : Simon and Schuster
Release : 2022-04-26
File : 574 Pages
ISBN-13 : 9781617298714


Journey To Become A Google Cloud Machine Learning Engineer

eBook Download

BOOK EXCERPT:

Prepare for the GCP ML certification exam along with exploring cloud computing and machine learning concepts and gaining Google Cloud ML skills Key FeaturesA comprehensive yet easy-to-follow Google Cloud machine learning study guideExplore full-spectrum and step-by-step practice examples to develop hands-on skillsRead through and learn from in-depth discussions of Google ML certification exam questionsBook Description This book aims to provide a study guide to learn and master machine learning in Google Cloud: to build a broad and strong knowledge base, train hands-on skills, and get certified as a Google Cloud Machine Learning Engineer. The book is for someone who has the basic Google Cloud Platform (GCP) knowledge and skills, and basic Python programming skills, and wants to learn machine learning in GCP to take their next step toward becoming a Google Cloud Certified Machine Learning professional. The book starts by laying the foundations of Google Cloud Platform and Python programming, followed the by building blocks of machine learning, then focusing on machine learning in Google Cloud, and finally ends the studying for the Google Cloud Machine Learning certification by integrating all the knowledge and skills together. The book is based on the graduate courses the author has been teaching at the University of Texas at Dallas. When going through the chapters, the reader is expected to study the concepts, complete the exercises, understand and practice the labs in the appendices, and study each exam question thoroughly. Then, at the end of the learning journey, you can expect to harvest the knowledge, skills, and a certificate. What you will learnProvision Google Cloud services related to data science and machine learningProgram with the Python programming language and data science librariesUnderstand machine learning concepts and model development processesExplore deep learning concepts and neural networksBuild, train, and deploy ML models with Google BigQuery ML, Keras, and Google Cloud Vertex AIDiscover the Google Cloud ML Application Programming Interface (API)Prepare to achieve Google Cloud Professional Machine Learning Engineer certificationWho this book is for Anyone from the cloud computing, data analytics, and machine learning domains, such as cloud engineers, data scientists, data engineers, ML practitioners, and engineers, will be able to acquire the knowledge and skills and achieve the Google Cloud professional ML Engineer certification with this study guide. Basic knowledge of Google Cloud Platform and Python programming is required to get the most out of this book.

Product Details :

Genre : Computers
Author : Dr. Logan Song
Publisher : Packt Publishing Ltd
Release : 2022-09-20
File : 330 Pages
ISBN-13 : 9781803239415


Machine Learning And Optimization For Engineering Design

eBook Download

BOOK EXCERPT:

This book aims to provide a collection of state-of-the-art scientific and technical research papers related to machine learning-based algorithms in the field of optimization and engineering design. The theoretical and practical development for numerous engineering applications such as smart homes, ICT-based irrigation systems, academic success prediction, future agro-industry for crop production, disease classification in plants, dental problems and solutions, loan eligibility processing, etc., and their implementation with several case studies and literature reviews are included as self-contained chapters. Additionally, the book intends to highlight the importance of study and effectiveness in addressing the time and space complexity of problems and enhancing accuracy, analysis, and validations for different practical applications by acknowledging the state-of-the-art literature survey. The book targets a larger audience by exploring multidisciplinary research directions such as computer vision, machine learning, artificial intelligence, modified/newly developed machine learning algorithms, etc., to enhance engineering design applications for society. State-of-the-art research work with illustrations and exercises along with pseudo-code has been provided here.

Product Details :

Genre : Computers
Author : Apoorva S. Shastri
Publisher : Springer Nature
Release : 2024-01-27
File : 175 Pages
ISBN-13 : 9789819974566


A Greater Foundation For Machine Learning Engineering

eBook Download

BOOK EXCERPT:

This research scholarly illustrated book has more than 250 illustrations. The simple models of supervised machine learning with Gaussian Naïve Bayes, Naïve Bayes, decision trees, classification rule learners, linear regression, logistic regression, local polynomial regression, regression trees, model trees, K-nearest neighbors, and support vector machines lay a more excellent foundation for statistics. The author of the book Dr. Ganapathi Pulipaka, a top influencer of machine learning in the US, has created this as a reference book for universities. This book contains an incredible foundation for machine learning and engineering beyond a compact manual. The author goes to extraordinary lengths to make academic machine learning and deep learning literature comprehensible to create a new body of knowledge. The book aims at readership from university students, enterprises, data science beginners, machine learning and deep learning engineers at scale for high-performance computing environments. A Greater Foundation of Machine Learning Engineering covers a broad range of classical linear algebra and calculus with program implementations in PyTorch, TensorFlow, R, and Python with in-depth coverage. The author does not hesitate to go into math equations for each algorithm at length that usually many foundational machine learning books lack leveraging the JupyterLab environment. Newcomers can leverage the book from University or people from all walks of data science or software lives to the advanced practitioners of machine learning and deep learning. Though the book title suggests machine learning, there are several implementations of deep learning algorithms, including deep reinforcement learning. The book's mission is to help build a strong foundation for machine learning and deep learning engineers with all the algorithms, processors to train and deploy into production for enterprise-wide machine learning implementations. This book also introduces all the concepts of natural language processing required for machine learning algorithms in Python. The book covers Bayesian statistics without assuming high-level mathematics or statistics experience from the readers. It delivers the core concepts and implementations required with R code with open datasets. The book also covers unsupervised machine learning algorithms with association rules and k-means clustering, metal-learning algorithms, bagging, boosting, random forests, and ensemble methods. The book delves into the origins of deep learning in a scholarly way covering neural networks, restricted Boltzmann machines, deep belief networks, autoencoders, deep Boltzmann machines, LSTM, and natural language processing techniques with deep learning algorithms and math equations. It leverages the NLTK library of Python with PyTorch, Python, and TensorFlow's installation steps, then demonstrates how to build neural networks with TensorFlow. Deploying machine learning algorithms require a blend of cloud computing platforms, SQL databases, and NoSQL databases. Any data scientist with a statistics background that looks to transition into a machine learning engineer role requires an in-depth understanding of machine learning project implementations on Amazon, Google, or Microsoft Azure cloud computing platforms. The book provides real-world client projects for understanding the complete implementation of machine learning algorithms. This book is a marvel that does not leave any application of machine learning and deep learning algorithms. It sets a more excellent foundation for newcomers and expands the horizons for experienced deep learning practitioners. It is almost inevitable that there will be a series of more advanced algorithms follow-up books from the author in some shape or form after setting such a perfect foundation for machine learning engineering.

Product Details :

Genre : Computers
Author : Dr. Ganapathi Pulipaka
Publisher : Xlibris Corporation
Release : 2021-10-01
File : 382 Pages
ISBN-13 : 9781664151277


Data Engineering For Machine Learning Pipelines

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Pavan Kumar Narayanan
Publisher : Springer Nature
Release :
File : 651 Pages
ISBN-13 : 9798868806025


Information Communication And Engineering

eBook Download

BOOK EXCERPT:

Selected, peer reviewed papers from the 2012 International Conference on Information, Communication and Engineering (ICICE 2012), December 15-20, 2012, Fuzhou, Taiwan

Product Details :

Genre : Technology & Engineering
Author : Teen Hang Meen
Publisher : Trans Tech Publications Ltd
Release : 2013-02-27
File : 563 Pages
ISBN-13 : 9783038260530


The Engineer

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Engineering
Author :
Publisher :
Release : 1881
File : 540 Pages
ISBN-13 : UOM:39015084713133


Machine Learning And Automatic Pattern Recognition

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Stanford University Stanford Electronics Laboratories
Publisher :
Release : 1961
File : 98 Pages
ISBN-13 : STANFORD:36105046371022


Advanced Engineering Forum Vol 52

eBook Download

BOOK EXCERPT:

The 52nd volume of the journal presents research results and engineering solutions in green building materials, modelling and calculations by structural mechanics approaches of embankment dams, cantilever retaining walls and assessment of the hygrothermal performance of bioclimatic innovative constructions for onion bulb preservation. This publication also presents the investigation of the effectiveness of some polymer polyacrylamide-based flocculants in the process of extraction of the metal and scale particles formed in the working electroerosive machining fluids, discusses the net-zero initiative for coal-fired power plants in Southern African Development Community in perspective to 2050 and explores the creation of a simulator for addressing the problem of predicting the response of Nigeria’s Kainji Hydro Power Plant to system load variations and determining parameters for stable operation. The volume will be useful to engineers in construction, machinery, power engineering and ecological safety.

Product Details :

Genre : Technology & Engineering
Author : Dumitru Nedelcu
Publisher : Trans Tech Publications Ltd
Release : 2024-07-25
File : 132 Pages
ISBN-13 : 9783036416250


Mechanical Engineers Handbook

eBook Download

BOOK EXCERPT:

A single source for mechanical engineers, offering all the critical information they require.

Product Details :

Genre : Control theory
Author : Myer Kutz
Publisher :
Release : 2006
File : 938 Pages
ISBN-13 : UOM:39015062443489