Bayesian Multilevel Models For Repeated Measures Data

eBook Download

BOOK EXCERPT:

This comprehensive book is an introduction to multilevel Bayesian models in R using brms and the Stan programming language. Featuring a series of fully worked analyses of repeated measures data, the focus is placed on active learning through the analyses of the progressively more complicated models presented throughout the book. In this book, the authors offer an introduction to statistics entirely focused on repeated measures data beginning with very simple two-group comparisons and ending with multinomial regression models with many ‘random effects’. Across 13 well-structured chapters, readers are provided with all the code necessary to run all the analyses and make all the plots in the book, as well as useful examples of how to interpret and write up their own analyses. This book provides an accessible introduction for readers in any field, with any level of statistical background. Senior undergraduate students, graduate students, and experienced researchers looking to ‘translate’ their skills with more traditional models to a Bayesian framework will benefit greatly from the lessons in this text.

Product Details :

Genre : Psychology
Author : Santiago Barreda
Publisher : Taylor & Francis
Release : 2023-05-18
File : 485 Pages
ISBN-13 : 9781000869781


Repeated Measures Design With Generalized Linear Mixed Models For Randomized Controlled Trials

eBook Download

BOOK EXCERPT:

Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials is the first book focused on the application of generalized linear mixed models and its related models in the statistical design and analysis of repeated measures from randomized controlled trials. The author introduces a new repeated measures design called S:T design combined with mixed models as a practical and useful framework of parallel group RCT design because of easy handling of missing data and sample size reduction. The book emphasizes practical, rather than theoretical, aspects of statistical analyses and the interpretation of results. It includes chapters in which the author describes some old-fashioned analysis designs that have been in the literature and compares the results with those obtained from the corresponding mixed models. The book will be of interest to biostatisticians, researchers, and graduate students in the medical and health sciences who are involved in clinical trials. Author Website:Data sets and programs used in the book are available at http://www.medstat.jp/downloadrepeatedcrc.html

Product Details :

Genre : Mathematics
Author : Toshiro Tango
Publisher : CRC Press
Release : 2017-09-14
File : 376 Pages
ISBN-13 : 9781498747905


Modeling Intraindividual Variability With Repeated Measures Data

eBook Download

BOOK EXCERPT:

This book examines how individuals behave across time and to what degree that behavior changes, fluctuates, or remains stable. It features the most current methods on modeling repeated measures data as reported by a distinguished group of experts in the field. The goal is to make the latest techniques used to assess intraindividual variability accessible to a wide range of researchers. Each chapter is written in a "user-friendly" style such that even the "novice" data analyst can easily apply the techniques. Each chapter features: a minimum discussion of mathematical detail; an empirical example applying the technique; and a discussion of the software related to that technique. Content highlights include analysis of mixed, multi-level, structural equation, and categorical data models. It is ideal for researchers, professionals, and students working with repeated measures data from the social and behavioral sciences, business, or biological sciences.

Product Details :

Genre : Psychology
Author : Scott L. Hershberger
Publisher : Psychology Press
Release : 2013-06-17
File : 293 Pages
ISBN-13 : 9781135673215


Data Analysis And Graphics Using R

eBook Download

BOOK EXCERPT:

Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.

Product Details :

Genre : Computers
Author : John Maindonald
Publisher : Cambridge University Press
Release : 2010-05-06
File : 565 Pages
ISBN-13 : 9781139486675


A Handbook Of Statistical Analyses Using R

eBook Download

BOOK EXCERPT:

R is dynamic, to say the least. More precisely, it is organic, with new functionality and add-on packages appearing constantly. And because of its open-source nature and free availability, R is quickly becoming the software of choice for statistical analysis in a variety of fields. Doing for R what Everitt's other Handbooks have done for S-P

Product Details :

Genre : Mathematics
Author : Torsten Hothorn
Publisher : CRC Press
Release : 2006-02-17
File : 298 Pages
ISBN-13 : 9781420010657


Multilevel Statistical Models

eBook Download

BOOK EXCERPT:

Throughout the social, medical and other sciences the importance of understanding complex hierarchical data structures is well understood. Multilevel modelling is now the accepted statistical technique for handling such data and is widely available in computer software packages. A thorough understanding of these techniques is therefore important for all those working in these areas. This new edition of Multilevel Statistical Models brings these techniques together, starting from basic ideas and illustrating how more complex models are derived. Bayesian methodology using MCMC has been extended along with new material on smoothing models, multivariate responses, missing data, latent normal transformations for discrete responses, structural equation modeling and survival models. Key Features: Provides a clear introduction and a comprehensive account of multilevel models. New methodological developments and applications are explored. Written by a leading expert in the field of multilevel methodology. Illustrated throughout with real-life examples, explaining theoretical concepts. This book is suitable as a comprehensive text for postgraduate courses, as well as a general reference guide. Applied statisticians in the social sciences, economics, biological and medical disciplines will find this book beneficial.

Product Details :

Genre : Mathematics
Author : Harvey Goldstein
Publisher : John Wiley & Sons
Release : 2011-07-08
File : 306 Pages
ISBN-13 : 9781119956822


Sas For Mixed Models

eBook Download

BOOK EXCERPT:

Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.

Product Details :

Genre : Computers
Author : Walter W. Stroup
Publisher : SAS Institute
Release : 2018-12-12
File : 823 Pages
ISBN-13 : 9781635261523


Generalized Linear Mixed Models

eBook Download

BOOK EXCERPT:

Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications (2nd edition) presents an updated introduction to linear modeling using the generalized linear mixed model (GLMM) as the overarching conceptual framework. For students new to statistical modeling, this book helps them see the big picture – linear modeling as broadly understood and its intimate connection with statistical design and mathematical statistics. For readers experienced in statistical practice, but new to GLMMs, the book provides a comprehensive introduction to GLMM methodology and its underlying theory. Unlike textbooks that focus on classical linear models or generalized linear models or mixed models, this book covers all of the above as members of a unified GLMM family of linear models. In addition to essential theory and methodology, this book features a rich collection of examples using SAS® software to illustrate GLMM practice. This second edition is updated to reflect lessons learned and experience gained regarding best practices and modeling choices faced by GLMM practitioners. New to this edition are two chapters focusing on Bayesian methods for GLMMs. Key Features: • Most statistical modeling books cover classical linear models or advanced generalized and mixed models; this book covers all members of the GLMM family – classical and advanced models. • Incorporates lessons learned from experience and on-going research to provide up-to-date examples of best practices. • Illustrates connections between statistical design and modeling: guidelines for translating study design into appropriate model and in-depth illustrations of how to implement these guidelines; use of GLMM methods to improve planning and design. • Discusses the difference between marginal and conditional models, differences in the inference space they are intended to address and when each type of model is appropriate. • In addition to likelihood-based frequentist estimation and inference, provides a brief introduction to Bayesian methods for GLMMs. Walt Stroup is an Emeritus Professor of Statistics. He served on the University of Nebraska statistics faculty for over 40 years, specializing in statistical modeling and statistical design. He is a Fellow of the American Statistical Association, winner of the University of Nebraska Outstanding Teaching and Innovative Curriculum Award and author or co-author of three books on mixed models and their extensions. Marina Ptukhina (Pa-too-he-nuh), PhD, is an Associate Professor of Statistics at Whitman College. She is interested in statistical modeling, design and analysis of research studies and their applications. Her research includes applications of statistics to economics, biostatistics and statistical education. Ptukhina earned a PhD in Statistics from the University of Nebraska-Lincoln, a Master of Science degree in Mathematics from Texas Tech University and a Specialist degree in Management from The National Technical University "Kharkiv Polytechnic Institute." Julie Garai, PhD, is a Data Scientist at Loop. She earned her PhD in Statistics from the University of Nebraska-Lincoln and a bachelor’s degree in Mathematics and Spanish from Doane College. Dr Garai actively collaborates with statisticians, psychologists, ecologists, forest scientists, software engineers, and business leaders in academia and industry. In her spare time, she enjoys leisurely walks with her dogs, dance parties with her children, and playing the trombone.

Product Details :

Genre : Mathematics
Author : Walter W. Stroup
Publisher : CRC Press
Release : 2024-05-21
File : 671 Pages
ISBN-13 : 9781498755580


Analysis Of Generalized Linear Mixed Models In The Agricultural And Natural Resources Sciences

eBook Download

BOOK EXCERPT:

Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences provides readers with an understanding and appreciation for the design and analysis of mixed models for non-normally distributed data. It is the only publication of its kind directed specifically toward the agricultural and natural resources sciences audience. Readers will especially benefit from the numerous worked examples based on actual experimental data and the discussion of pitfalls associated with incorrect analyses.

Product Details :

Genre : Technology & Engineering
Author : Edward E. Gbur
Publisher : John Wiley & Sons
Release : 2020-01-22
File : 304 Pages
ISBN-13 : 9780891181828


Univariate And Multivariate General Linear Models

eBook Download

BOOK EXCERPT:

Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences. With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regression and ANOVA designs as well as restricted GLMs to study ANCOVA designs and repeated measurement designs. Extensions of these concepts include GLMs with heteroscedastic errors that encompass weighted least squares regression and categorical data analysis, and multivariate GLMs that cover multivariate regression analysis, MANOVA, MANCOVA, and repeated measurement data analyses. The book also analyzes double multivariate linear, growth curve, seeming unrelated regression (SUR), restricted GMANOVA, and hierarchical linear models. New to the Second Edition Two chapters on finite intersection tests and power analysis that illustrates the experimental GLMPOWER procedure Expanded theory of unrestricted general linear, multivariate general linear, SUR, and restricted GMANOVA models to comprise recent developments Expanded material on missing data to include multiple imputation and the EM algorithm Applications of MI, MIANALYZE, TRANSREG, and CALIS procedures A practical introduction to GLMs, Univariate and Multivariate General Linear Models demonstrates how to fully grasp the generality of GLMs by discussing them within a general framework.

Product Details :

Genre : Mathematics
Author : Kevin Kim
Publisher : CRC Press
Release : 2006-10-11
File : 576 Pages
ISBN-13 : 158488634X