A Brief Introduction To Continuous Evolutionary Optimization

eBook Download

BOOK EXCERPT:

Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods.

Product Details :

Genre : Technology & Engineering
Author : Oliver Kramer
Publisher : Springer Science & Business Media
Release : 2013-12-04
File : 100 Pages
ISBN-13 : 9783319034225


Principles In Noisy Optimization

eBook Download

BOOK EXCERPT:

Noisy optimization is a topic of growing interest for researchers working on mainstream optimization problems. Although several techniques for dealing with stochastic noise in optimization problems are covered in journals and conference proceedings, today there are virtually no books that approach noisy optimization from a layman’s perspective; this book remedies that gap. Beginning with the foundations of evolutionary optimization, the book subsequently explores the principles of noisy optimization in single and multi-objective settings, and presents detailed illustrations of the principles developed for application in real-world multi-agent coordination problems. Special emphasis is given to the design of intelligent algorithms for noisy optimization in real-time applications. The book is unique in terms of its content, writing style and above all its simplicity, which will appeal to readers with a broad range of backgrounds. The book is divided into 7 chapters, the first of which provides an introduction to Swarm and Evolutionary Optimization algorithms. Chapter 2 includes a thorough review of agent architectures for multi-agent coordination. In turn, Chapter 3 provides an extensive review of noisy optimization, while Chapter 4 addresses issues of noise handling in the context of single-objective optimization problems. An illustrative case study on multi-robot path-planning in the presence of measurement noise is also highlighted in this chapter. Chapter 5 deals with noisy multi-objective optimization and includes a case study on noisy multi-robot box-pushing. In Chapter 6, the authors examine the scope of various algorithms in noisy optimization problems. Lastly, Chapter 7 summarizes the main results obtained in the previous chapters and elaborates on the book’s potential with regard to real-world noisy optimization problems.

Product Details :

Genre : Computers
Author : Pratyusha Rakshit
Publisher : Springer
Release : 2018-11-20
File : 379 Pages
ISBN-13 : 9789811086427


Applications Of Evolutionary Computation

eBook Download

BOOK EXCERPT:

This book constitutes the refereed proceedings of the 23rd European Conference on Applications of Evolutionary Computation, EvoApplications 2020, held as part of Evo*2020, in Seville, Spain, in April 2020, co-located with the Evo*2020 events EuroGP, EvoMUSART and EvoCOP. The 44 full papers presented in this book were carefully reviewed and selected from 62 submissions. The papers cover a wide spectrum of topics, ranging from applications of bio-inspired techniques on social networks, evolutionary computation in digital healthcare and personalized medicine, soft-computing applied to games, applications of deep-bioinspired algorithms, parallel and distributed systems, and evolutionary machine learning.​

Product Details :

Genre : Computers
Author : Pedro A. Castillo
Publisher : Springer Nature
Release : 2020-04-09
File : 709 Pages
ISBN-13 : 9783030437220


Artificial Neural Networks And Machine Learning Icann 2019 Deep Learning

eBook Download

BOOK EXCERPT:

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions.

Product Details :

Genre : Computers
Author : Igor V. Tetko
Publisher : Springer Nature
Release : 2019-09-09
File : 818 Pages
ISBN-13 : 9783030304843


Applied Reliability For Industry 1

eBook Download

BOOK EXCERPT:

Applied Reliability for Industry 1 illustrates the multidisciplinary state-of-the-art science of predictive reliability. Many experts are now convinced that reliability is not limited to statistical sciences. In fact, many different disciplines interact in order to bring a product to its highest possible level of reliability, made available through today's technologies, developments and production methods. These three books, of which this is the first, propose new methods for analyzing the lifecycle of a system, enabling us to record the development phases according to development time and levels of complexity for its integration. Predictive reliability, as particularly focused on in Applied Reliability for Industry 1, examines all the engineering activities used to estimate or predict the reliability performance of the final mechatronic system.

Product Details :

Genre : Technology & Engineering
Author : Abdelkhalak El Hami
Publisher : John Wiley & Sons
Release : 2023-04-20
File : 260 Pages
ISBN-13 : 9781394209736


Evolutionary Algorithms

eBook Download

BOOK EXCERPT:

Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.

Product Details :

Genre : Computers
Author : Alain Petrowski
Publisher : John Wiley & Sons
Release : 2017-04-11
File : 214 Pages
ISBN-13 : 9781119136415


Evolutionary Multiobjective Optimization

eBook Download

BOOK EXCERPT:

Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.

Product Details :

Genre : Computers
Author : Ajith Abraham
Publisher : Springer Science & Business Media
Release : 2005-04-22
File : 326 Pages
ISBN-13 : 1852337877


Evolutionary Computation For Dynamic Optimization Problems

eBook Download

BOOK EXCERPT:

This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.

Product Details :

Genre : Technology & Engineering
Author : Shengxiang Yang
Publisher : Springer
Release : 2013-11-18
File : 479 Pages
ISBN-13 : 9783642384165


Advances In Computing Communication And Control

eBook Download

BOOK EXCERPT:

This book constitutes the refereed proceedings of the International Conference on Advances in Computing Communications and Control, ICAC3 2011, held in Mumbai, India, in January 2011. The 84 revised full papers presented were carefully reviewed and selected from 309 submissions. The papers address issues such as AI, artificial neural networks, computer graphics, data warehousing and mining, distributed computing, geo information and statistical computing, learning algorithms, system security, virtual reality, cloud computing, service oriented architecture, semantic web, coding techniques, modeling and simulation of communication systems, network architecture, network protocols, optical fiber/microwave communication, satellite communication, speech/image processing, wired and wireless communication, cooperative control, and nonlinear control, process control and instrumentation, industrial automation, controls in aerospace, robotics, and power systems.

Product Details :

Genre : Computers
Author : Srija Unnikrishnan
Publisher : Springer
Release : 2011-01-21
File : 554 Pages
ISBN-13 : 9783642184406


Evolutionary Optimization Algorithms

eBook Download

BOOK EXCERPT:

A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.

Product Details :

Genre : Mathematics
Author : Dan Simon
Publisher : John Wiley & Sons
Release : 2013-06-13
File : 776 Pages
ISBN-13 : 9781118659502