WELCOME TO THE LIBRARY!!!
What are you looking for Book "A First Course In Module Theory" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
This book is an introduction to module theory for the reader who knows something about linear algebra and ring theory. Its main aim is the derivation of the structure theory of modules over Euclidean domains. This theory is applied to obtain the structure of abelian groups and the rational canonical and Jordan normal forms of matrices. The basic facts about rings and modules are given in full generality, so that some further topics can be discussed, including projective modules and the connection between modules and representations of groups.The book is intended to serve as supplementary reading for the third or fourth year undergraduate who is taking a course in module theory. The further topics point the way to some projects that might be attempted in conjunction with a taught course.
Product Details :
Genre |
: Mathematics |
Author |
: Mike E Keating |
Publisher |
: World Scientific |
Release |
: 1998-07-31 |
File |
: 271 Pages |
ISBN-13 |
: 9781783262403 |
eBook Download
BOOK EXCERPT:
This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.
Product Details :
Genre |
: Mathematics |
Author |
: Fred Diamond |
Publisher |
: Springer Science & Business Media |
Release |
: 2006-03-30 |
File |
: 462 Pages |
ISBN-13 |
: 9780387272269 |
eBook Download
BOOK EXCERPT:
This is a concise 2000 introduction at graduate level to ring theory, module theory and number theory.
Product Details :
Genre |
: Mathematics |
Author |
: A. J. Berrick |
Publisher |
: Cambridge University Press |
Release |
: 2000-05 |
File |
: 286 Pages |
ISBN-13 |
: 0521632749 |
eBook Download
BOOK EXCERPT:
The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.
Product Details :
Genre |
: Mathematics |
Author |
: Neal Koblitz |
Publisher |
: Springer Science & Business Media |
Release |
: 2012-12-06 |
File |
: 163 Pages |
ISBN-13 |
: 9781461211129 |
eBook Download
BOOK EXCERPT:
This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.
Product Details :
Genre |
: Mathematics |
Author |
: W. Arveson |
Publisher |
: Springer Science & Business Media |
Release |
: 2012-12-06 |
File |
: 117 Pages |
ISBN-13 |
: 9781461263715 |
eBook Download
BOOK EXCERPT:
This text covers Riemann surface theory from elementary aspects to the fontiers of current research. Open and closed surfaces are treated with emphasis on the compact case, while basic tools are developed to describe the analytic, geometric, and algebraic properties of Riemann surfaces and the associated Abelian varities. Topics covered include existence of meromorphic functions, the Riemann-Roch theorem, Abel's theorem, the Jacobi inversion problem, Noether's theorem, and the Riemann vanishing theorem. A complete treatment of the uniformization of Riemann sufaces via Fuchsian groups, including branched coverings, is presented, as are alternate proofs for the most important results, showing the diversity of approaches to the subject. Of interest not only to pure mathematicians, but also to physicists interested in string theory and related topics.
Product Details :
Genre |
: Mathematics |
Author |
: Hershel M. Farkas |
Publisher |
: Springer Science & Business Media |
Release |
: 1991-12-23 |
File |
: 386 Pages |
ISBN-13 |
: 9780387977034 |
eBook Download
BOOK EXCERPT:
Many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. While function theory has often been employed to answer algebraic questions such as the existence of idempotents in a Banach algebra, concepts arising from the study of Banach algebras including the maximal ideal space, the Silov boundary, Geason parts, etc. have led to new questions and to new methods of proofs in function theory. This book is concerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. The authors do not presuppose any knowledge of several complex variables on the part of the reader and all relevant material is developed within the text. Furthermore, the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. The third edition of this book contains new material on; maximum modulus algebras and subharmonicity, the hull of a smooth curve, integral kernels, perturbations of the Stone-Weierstrass Theorem, boundaries of analytic varieties, polynomial hulls of sets over the circle, areas, and the topology of hulls. The authors have also included a new chapter containing commentaries on history and recent developments and an updated and expanded reading list.
Product Details :
Genre |
: Mathematics |
Author |
: Herbert Alexander |
Publisher |
: Springer Science & Business Media |
Release |
: 1998 |
File |
: 265 Pages |
ISBN-13 |
: 9780387982533 |
eBook Download
BOOK EXCERPT:
This book introduces the infinite dimensional representation theory of semisimple Lie groups by concentrating on one example - SL2(R). The contents are accessible to a wide audience, requiring only a knowledge of real analysis, and some differential equations.
Product Details :
Genre |
: Mathematics |
Author |
: S. Lang |
Publisher |
: Springer Science & Business Media |
Release |
: 1985-08-23 |
File |
: 456 Pages |
ISBN-13 |
: 0387961984 |
eBook Download
BOOK EXCERPT:
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Product Details :
Genre |
: Mathematics |
Author |
: John M. Lee |
Publisher |
: Springer Science & Business Media |
Release |
: 2006-04-06 |
File |
: 232 Pages |
ISBN-13 |
: 9780387227269 |
eBook Download
BOOK EXCERPT:
Provides a more accessible introduction than other books on Markov processes by emphasizing the structure of the subject and avoiding sophisticated measure theory Leads the reader to a rigorous understanding of basic theory
Product Details :
Genre |
: Mathematics |
Author |
: Daniel W. Stroock |
Publisher |
: Springer Science & Business Media |
Release |
: 2005-10-14 |
File |
: 187 Pages |
ISBN-13 |
: 9783540269908 |