A First Course Of Homological Algebra

eBook Download

BOOK EXCERPT:

Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.

Product Details :

Genre : Mathematics
Author : Douglas Geoffrey Northcott
Publisher : CUP Archive
Release : 1973-10-11
File : 224 Pages
ISBN-13 : 0521201969


A Course In Homological Algebra

eBook Download

BOOK EXCERPT:

In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

Product Details :

Genre : Mathematics
Author : P.J. Hilton
Publisher : Springer Science & Business Media
Release : 2013-03-09
File : 348 Pages
ISBN-13 : 9781468499360


Basic Homological Algebra

eBook Download

BOOK EXCERPT:

From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter

Product Details :

Genre : Mathematics
Author : M. Scott Osborne
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 398 Pages
ISBN-13 : 9781461212782


Lectures On Functor Homology

eBook Download

BOOK EXCERPT:

This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament’s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko’s unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert’s fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin’s strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov’s lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touzé’s introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.

Product Details :

Genre : Mathematics
Author : Vincent Franjou
Publisher : Birkhäuser
Release : 2015-12-08
File : 154 Pages
ISBN-13 : 9783319213057


A First Course In Modular Forms

eBook Download

BOOK EXCERPT:

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

Product Details :

Genre : Mathematics
Author : Fred Diamond
Publisher : Springer Science & Business Media
Release : 2006-03-30
File : 462 Pages
ISBN-13 : 9780387272269


A First Course In Noncommutative Rings

eBook Download

BOOK EXCERPT:

One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.

Product Details :

Genre : Mathematics
Author : T.Y. Lam
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 410 Pages
ISBN-13 : 9781468404067


Rings And Their Modules

eBook Download

BOOK EXCERPT:

This book is an introduction to the theory of rings and modules that goes beyond what one normally obtains in a graduate course in abstract algebra. In addition to the presentation of standard topics in ring and module theory, it also covers category theory, homological algebra and even more specialized topics like injective envelopes and proj

Product Details :

Genre : Mathematics
Author : Paul E. Bland
Publisher : Walter de Gruyter
Release : 2011
File : 467 Pages
ISBN-13 : 9783110250220


Introduction To Homological Algebra 85

eBook Download

BOOK EXCERPT:

An Introduction to Homological Algebra discusses the origins of algebraic topology. It also presents the study of homological algebra as a two-stage affair. First, one must learn the language of Ext and Tor and what it describes. Second, one must be able to compute these things, and often, this involves yet another language: spectral sequences. Homological algebra is an accessible subject to those who wish to learn it, and this book is the author's attempt to make it lovable. This book comprises 11 chapters, with an introductory chapter that focuses on line integrals and independence of path, categories and functors, tensor products, and singular homology. Succeeding chapters discuss Hom and ?; projectives, injectives, and flats; specific rings; extensions of groups; homology; Ext; Tor; son of specific rings; the return of cohomology of groups; and spectral sequences, such as bicomplexes, Kunneth Theorems, and Grothendieck Spectral Sequences. This book will be of interest to practitioners in the field of pure and applied mathematics.

Product Details :

Genre : Mathematics
Author : Joseph J. Rotman
Publisher : Academic Press
Release : 1979-09-07
File : 393 Pages
ISBN-13 : 9780080874012


Homology Cohomology And Sheaf Cohomology For Algebraic Topology Algebraic Geometry And Differential Geometry

eBook Download

BOOK EXCERPT:

For more than thirty years the senior author has been trying to learn algebraic geometry. In the process he discovered that many of the classic textbooks in algebraic geometry require substantial knowledge of cohomology, homological algebra, and sheaf theory. In an attempt to demystify these abstract concepts and facilitate understanding for a new generation of mathematicians, he along with co-author wrote this book for an audience who is familiar with basic concepts of linear and abstract algebra, but who never has had any exposure to the algebraic geometry or homological algebra. As such this book consists of two parts. The first part gives a crash-course on the homological and cohomological aspects of algebraic topology, with a bias in favor of cohomology. The second part is devoted to presheaves, sheaves, Cech cohomology, derived functors, sheaf cohomology, and spectral sequences. All important concepts are intuitively motivated and the associated proofs of the quintessential theorems are presented in detail rarely found in the standard texts.

Product Details :

Genre : Mathematics
Author : Jean H Gallier
Publisher : World Scientific
Release : 2022-01-19
File : 799 Pages
ISBN-13 : 9789811245046


An Introduction To Homological Algebra

eBook Download

BOOK EXCERPT:

Graduate mathematics students will find this book an easy-to-follow, step-by-step guide to the subject. Rotman’s book gives a treatment of homological algebra which approaches the subject in terms of its origins in algebraic topology. In this new edition the book has been updated and revised throughout and new material on sheaves and cup products has been added. The author has also included material about homotopical algebra, alias K-theory. Learning homological algebra is a two-stage affair. First, one must learn the language of Ext and Tor. Second, one must be able to compute these things with spectral sequences. Here is a work that combines the two.

Product Details :

Genre : Mathematics
Author : Joseph J. Rotman
Publisher : Springer Science & Business Media
Release : 2008-12-10
File : 722 Pages
ISBN-13 : 9780387683249