Advanced Machine Learning Using Python Programming

eBook Download

BOOK EXCERPT:

THE AUTHOR(S) AND PUBLISHER OF THIS BOOK HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK. THESE EFFORTS INCLUDE THE DEVELOPMENT, RESEARCH ANDTESTING OF THE THEORIES AND PROGRAMS TO DETERMINE THEIR EFFECTIVENESS. THE AUTHORS AND PUBLISHER MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIEDWITH REGARD TO THESE PROGRAMS OR THE DOCUMENTATION CONTAINED IN THIS BOOK. THE AUTHORS AND PUBLISHER SHALL NOT BE LIABLE IN ANY EVENT FORINCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH, OR ARISING OUT OF, THE FURNISHING, PERFORMANCE, OR USE OF THESE PROGRAMS. COPYRIGHTS © 2023 BY MILESTONE RESEARCH PUBLICATIONS, INC. THIS EDITION IS PUBLISHED BY ARRANGEMENT WITH MILESTONE RESEARCH FOUNDATION, INC. THIS BOOK IS SOLD SUBJECT TO THE CONDITION THAT IT SHALL NOT, BY WAY OF TRADE OR OTHERWISE, BE LENT, RESOLD, HIRED OUT, OR OTHERWISE CIRCULATED WITHOUTTHE PUBLISHER'S PRIOR WRITTEN CONSENT IN ANY FORM OF BINDING OR COVER OTHER THAN THAT IN WHICH IT IS PUBLISHED AND WITHOUT A SIMILAR CONDITIONINCLUDING THIS CONDITION BEING IMPOSED ON THE SUBSEQUENT PURCHASER AND WITHOUT LIMITING THE RIGHTS UNDER COPYRIGHT RESERVED ABOVE, NO PART OF THISPUBLICATION MAY BE REPRODUCED, STORED IN OR INTRODUCED INTO RETRIEVAL SYSTEM, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS (ELECTRONIC, MECHANICAL,PHOTOCOPYING, RECORDING AND OTHERWISE) WITHOUT THE PRIOR WRITTEN PERMISSION OF BOTH THE COPYRIGHT OWNER AND THE ABOVE MENTIONED PUBLISHER OFTHIS BOOK.

Product Details :

Genre : Computers
Author : SOHARA BANU A R
Publisher : MileStone Research Publications
Release : 2023-07-13
File : 101 Pages
ISBN-13 : 9789359149783


Advanced Machine Learning With Python

eBook Download

BOOK EXCERPT:

Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python About This Book Resolve complex machine learning problems and explore deep learning Learn to use Python code for implementing a range of machine learning algorithms and techniques A practical tutorial that tackles real-world computing problems through a rigorous and effective approach Who This Book Is For This title is for Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution, or of entering a Kaggle contest for instance, this book is for you! Prior experience of Python and grounding in some of the core concepts of machine learning would be helpful. What You Will Learn Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Apply your new found skills to solve real problems, through clearly-explained code for every technique and test Automate large sets of complex data and overcome time-consuming practical challenges Improve the accuracy of models and your existing input data using powerful feature engineering techniques Use multiple learning techniques together to improve the consistency of results Understand the hidden structure of datasets using a range of unsupervised techniques Gain insight into how the experts solve challenging data problems with an effective, iterative, and validation-focused approach Improve the effectiveness of your deep learning models further by using powerful ensembling techniques to strap multiple models together In Detail Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering. Style and approach This book focuses on clarifying the theory and code behind complex algorithms to make them practical, useable, and well-understood. Each topic is described with real-world applications, providing both broad contextual coverage and detailed guidance.

Product Details :

Genre : Computers
Author : John Hearty
Publisher : Packt Publishing Ltd
Release : 2016-07-28
File : 278 Pages
ISBN-13 : 9781784393830


Data Science Quick Reference Manual Advanced Machine Learning And Deployment

eBook Download

BOOK EXCERPT:

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Part in a series of texts, it first summarizes the standard CRISP DM working methodology used in this work and in Data Science projects. As this text uses Orange for the application aspects, it describes its installation and widgets. The data modeling phase is considered from the perspective of machine learning by summarizing machine learning types, model types, problem types, and algorithm types. Advanced aspects associated with modeling are described such as loss and optimization functions such as gradient descent, techniques to analyze model performance such as Bootstrapping and Cross Validation. Deployment scenarios and the most common platforms are analyzed, with application examples. Mechanisms are proposed to automate machine learning and to support the interpretability of models and results such as Partial Dependence Plot, Permuted Feature Importance and others. The exercises are described with Orange and Python using the Keras/Tensorflow library. The text is accompanied by supporting material and it is possible to download the examples and the test data.

Product Details :

Genre : Computers
Author : Mario A. B. Capurso
Publisher : Mario Capurso
Release : 2023-09-08
File : 278 Pages
ISBN-13 :


Machine Learning For Computer Scientists And Data Analysts

eBook Download

BOOK EXCERPT:

This textbook introduces readers to the theoretical aspects of machine learning (ML) algorithms, starting from simple neuron basics, through complex neural networks, including generative adversarial neural networks and graph convolution networks. Most importantly, this book helps readers to understand the concepts of ML algorithms and enables them to develop the skills necessary to choose an apt ML algorithm for a problem they wish to solve. In addition, this book includes numerous case studies, ranging from simple time-series forecasting to object recognition and recommender systems using massive databases. Lastly, this book also provides practical implementation examples and assignments for the readers to practice and improve their programming capabilities for the ML applications.

Product Details :

Genre : Technology & Engineering
Author : Setareh Rafatirad
Publisher : Springer Nature
Release : 2022-07-09
File : 465 Pages
ISBN-13 : 9783030967567


Advanced Machine Learning Approaches In Cancer Prognosis

eBook Download

BOOK EXCERPT:

This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.

Product Details :

Genre : Technology & Engineering
Author : Janmenjoy Nayak
Publisher : Springer Nature
Release : 2021-05-29
File : 461 Pages
ISBN-13 : 9783030719753


Advanced Machine Learning Algorithms

eBook Download

BOOK EXCERPT:

The field of artificial intelligence has reached a greater degree of complexity with the introduction of advanced machine learning algorithms. When compared to more conventional approaches, these algorithms are more exhaustive in their examination of data analysis, pattern detection, and decision-making procedures. This is an overview that serves as an introduction. Deep learning is a subfield of machine learning in which artificial neural networks, which are modelled after the structure and function of the human brain, are taught to discover new information by analyzing huge volumes of data. For example, Convolutional Neural Networks (CNNs) for image recognition and Recurrent Neural Networks (RNNs) for sequential data analysis are examples of deep learning models that have achieved great success in a variety of disciplines, including computer vision, natural language processing, and speech recognition. Through the process of reinforcement learning, agents are taught to make sequences of decisions within an environment in order to maximize the accumulation of overall rewards. Reinforcement learning agents learn by trial and error, getting feedback in the form of incentives or penalties. This is in contrast to supervised learning, which offers the model data that has been labelled. The use of this strategy has shown to be effective in a variety of domains, including robotics, autonomous vehicle control, and game playing (for example, AlphaGo). Deep learning models that fall into the GAN category were first presented by Ian Good fellow in the year 2014. Generalized adversarial networks (GANs) are made up of two neural networks—a generator and a discriminator—that are trained concurrently in a competitive environment. It is the discriminator's job to learn how to distinguish between genuine and false data, while the generator is responsible for learning how to make synthetic data samples that are similar to actual data. Application areas for GANs include the production of images, the enhancement of data, and the transfer of styles. This particular sort of deep learning model, known as transformers, has been increasingly popular in the field of natural language processing (NLP) initiatives. Transformers, in contrast to more conventional sequence models such as recurrent neural networks (RNNs) and long short-term

Product Details :

Genre : Computers
Author : Mr. Rajesh Sen
Publisher : Xoffencerpublication
Release : 2024-04-18
File : 252 Pages
ISBN-13 : 9788119534753


Next Generation Wireless Networks Meet Advanced Machine Learning Applications

eBook Download

BOOK EXCERPT:

The ever-evolving wireless technology industry is demanding new technologies and standards to ensure a higher quality of experience for global end-users. This developing challenge has enabled researchers to identify the present trend of machine learning as a possible solution, but will it meet business velocity demand? Next-Generation Wireless Networks Meet Advanced Machine Learning Applications is a pivotal reference source that provides emerging trends and insights into various technologies of next-generation wireless networks to enable the dynamic optimization of system configuration and applications within the fields of wireless networks, broadband networks, and wireless communication. Featuring coverage on a broad range of topics such as machine learning, hybrid network environments, wireless communications, and the internet of things; this publication is ideally designed for industry experts, researchers, students, academicians, and practitioners seeking current research on various technologies of next-generation wireless networks.

Product Details :

Genre : Technology & Engineering
Author : Com?a, Ioan-Sorin
Publisher : IGI Global
Release : 2019-01-25
File : 379 Pages
ISBN-13 : 9781522574590


Cloud Data Science Harnessing Azure Machine Learning With Python

eBook Download

BOOK EXCERPT:

Unlock the full potential of your data with "Cloud Data Science: Harnessing Azure Machine Learning with Python." This comprehensive guide equips you with the knowledge and skills to leverage the power of Azure Machine Learning and the versatility of Python to innovate and streamline your machine learning workflows. From setting up your Azure Machine Learning workspace to deploying sophisticated models, this book covers essential techniques and advanced methodologies in a clear, practical format. Dive into core topics such as data management, automated machine learning workflows, model optimization, and real-time monitoring to ensure your projects are scalable, efficient, and effective. Whether you're a data scientist, machine learning engineer, or a professional seeking to enhance your understanding of cloud-based machine learning, this book offers invaluable insights and hands-on examples to help you transform vast amounts of data into actionable insights. Explore real-world case studies across various industries, learn to overcome common challenges, and discover best practices for implementing machine learning projects successfully. "Cloud Data Science: Harnessing Azure Machine Learning with Python" is your gateway to mastering data science in the cloud and advancing your professional capabilities in the future of technology.

Product Details :

Genre : Computers
Author : Peter Jones
Publisher : Walzone Press
Release : 2024-10-15
File : 174 Pages
ISBN-13 :


Advanced Machine Learning Technologies And Applications

eBook Download

BOOK EXCERPT:

This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.

Product Details :

Genre : Technology & Engineering
Author : Aboul Ella Hassanien
Publisher : Springer Nature
Release : 2020-05-25
File : 737 Pages
ISBN-13 : 9789811533839


Beginning With Machine Learning

eBook Download

BOOK EXCERPT:

A step-by-step guide to get started with Machine Learning KEY FEATURES ● Understand different types of Machine Learning like Supervised, Unsupervised, Semi-supervised, and Reinforcement learning. ● Learn how to implement Machine Learning algorithms effectively and efficiently. ● Get familiar with the various libraries & tools for Machine Learning. DESCRIPTION Should I choose supervised learning or reinforcement learning? Which algorithm is best suited for my application? How does deep learning advance the capacities of problem-solving? If you have found yourself asking these questions, this book is specially developed for you. The book will help readers understand the core concepts of machine learning and techniques to evaluate any machine learning model with ease. The book starts with the importance of machine learning by analyzing its impact on the global landscape. The book also covers Supervised and Unsupervised ML along with Reinforcement Learning. In subsequent chapters, the book explores these topics in even greater depth, evaluating the pros and cons of each and exploring important topics such as Bias-Variance Tradeoff, Clustering, and Dimensionality Reduction. The book also explains model evaluation techniques such as Cross-Validation and GridSearchCV. The book also features mind maps which help enhance the learning process by making it easier to learn and retain information. This book is a one-stop solution for covering basic ML concepts in detail and the perfect stepping stone to becoming an expert in ML and deep learning and even applying them to different professions. WHAT YOU WILL LEARN ● Understand important concepts to fully grasp the idea of supervised learning. ● Get familiar with the basics of unsupervised learning and some of its algorithms. ● Learn how to analyze the performance of your Machine Learning models. ● Explore the different methodologies of Reinforcement Learning. ● Learn how to implement different types of Neural networks. WHO THIS BOOK IS FOR This book is aimed at those who are new to machine learning and deep learning or want to extend their ML knowledge. Anyone looking to apply ML to data in their profession will benefit greatly from this book. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Supervised Learning 3. Unsupervised Learning 4. Model Evaluation 5. Reinforcement Learning 6. Neural Networking and Deep Learning 7. Appendix: Machine Learning Questions

Product Details :

Genre : Computers
Author : Dr. Amit Dua
Publisher : BPB Publications
Release : 2022-12-12
File : 236 Pages
ISBN-13 : 9789355511041