Advanced Nanocarbon Polymer Biocomposites

eBook Download

BOOK EXCERPT:

Nanocarbon polymer biocomposites have gained increased attention from both researchers and manufacturers due to the significant improvement in their physico-mechanical, thermal and barrier properties when compared to conventional materials. Their dimensions, biodegradable character, cost-effectiveness, and sustainability are among the main drivers for increasing demand. However, it is difficult to achieve uniform dispersion between the carbon filler and matrix as it easily forms agglomerations. Production of nanocarbon polymer biocomposites with high mechanical and thermal properties is also limited, but there has been rapid progress in processing possibilities to produce nanocomposites based on various biodegradable fillers. Advanced Nanocarbon Polymer Biocomposites: Sustainability Towards Zero Biowaste collects all these novel scientific findings in one place. It discusses in detail their physical, chemical, and electrical properties and presents the latest research findings on nanocarbon polymer biocomposites with filler loadings and their improvement on compatibility. The book will be of great interest for those researchers who are concerned with the production and use of nanocarbon polymer biocomposites as a new innovative advanced material. - Emphasis on nanoscale fillers and their improvement on compatibility - Evaluates the impact of polymer production through life cycle analysis of both single and hybrid polymers and nanocomposites - A strong focus on sustainability and green chemistry perspectives

Product Details :

Genre : Technology & Engineering
Author : Md Rezaur Rahman
Publisher : Elsevier
Release : 2024-07-26
File : 735 Pages
ISBN-13 : 9780443139826


Nanocarbon And Its Composites

eBook Download

BOOK EXCERPT:

Nanocarbon and Its Composites: Preparation, Properties and Applications provides a detailed and comprehensive review of all major innovations in the field of nanocarbons and their composites, including preparation, properties and applications. Coverage is broad and quite extensive, encouraging future research in carbon-based materials, which are in high demand due to the need to develop more sustainable, recyclable and eco-friendly methods for materials. Chapters are written by eminent scholars and leading experts from around the globe who discuss the properties and applications of carbon-based materials, such as nanotubes (buckytubes), fullerenes, cones, horns, rods, foams, nanodiamonds and carbon black, and much more. Chapters provide cutting-edge, up-to-date research findings on the use of carbon-based materials in different application fields and illustrate how to achieve significant enhancements in physical, chemical, mechanical and thermal properties. - Demonstrates systematic approaches and investigations from design, synthesis, characterization and applications of nanocarbon based composites - Aims to compile information on the various aspects of synthesis, properties and applications of nano-carbon based materials - Presents a useful reference and technical guide for university academics and postgraduate students (Masters and Ph.D.)

Product Details :

Genre : Technology & Engineering
Author : Anish Khan
Publisher : Woodhead Publishing
Release : 2018-11-30
File : 874 Pages
ISBN-13 : 9780081025109


Near Infrared Photon Assisted Polymerization Of Advanced Polymer Composites

eBook Download

BOOK EXCERPT:

Advanced composites play important roles in the materials sciences, military, space and commercial applications. The desirable load transfer and mechanical strength of reinforced polymers are crucial for developing advanced composites. Owing to their excellent mechanical properties derived from the sp2 bonding structure and the nanoscale size, nano-carbons are attractive materials used for nanoscale reinforcement of polymer composites. This dissertation describes a novel method to develop polymer composites using near infrared (NIR) photon-assisted polymerization and nanoscale reinforcement. We used multi-walled carbon nanotubes (MWNTs), reduced graphene oxide (RGO), and graphene nanoplatelets (GNPs) to make polymer composites, and explored in-situ NIR photon assisted heating of these nano carbons to enhance polymerization of the nano-carbon/polymer interface, thus achieving significant load transfer and improved mechanical properties. To specify, nano-carbon was dispersed into the polymer matrix by shear or evaporation mixing method to attain a uniform distribution in the prepared thin film composite. The thin film was exposed to NIR light during polymerization instead of conventional oven based heating. NIR was effectively absorbed by nano-carbons and also atoms from polymer molecule; the induced photo-thermal heat was transferred into the polymer matrix to induce polymerization of the composite and the covalent bonding between nano-carbons and polymer matrix at the interface. Scanning electron microscope (SEM), Raman spectroscopy, and RSA were used to evaluate the load transfer and mechanical strength of the polymerized composite samples. Investigating first the nanotube/polymer composites synergized by NIR photon-assisted polymerization, large Raman shifts (20 cm-1 wavenumber for up to 80% strains) of the 2D band were recorded for the NIR light polymerized samples and an increase in Young's modulus by ~130% was measured for the 1 wt. MWNT/poly(dimethylsiloxane) (PDMS) composites. While at first it was thought that NIR radiation during polymerization heated the nano-carbons inside resulting in strengthening of the nano-carbon/polymer interface, it was seen after further experimentation with graphene reinforcements that other light induced bonding effects apart from heat were also responsible. Raman spectroscopy revealed that mixing graphene in polymer has a profound effect on the G, D and 2D bands. Investigating G bands for pure RGO and GNPs and comparing them with their polymer counterparts showed large shifts in the G band indicating lattice compression. The comparison of the NIR polymerization with the conventional oven based polymerization for both RGO and GNPs revealed large changes in wavenumbers and indicated increased load transfers for the NIR photon-assisted polymerization method. The Full Width Half Maximum (FWHM) data of the NIR treated samples exhibited smaller change at large strains compared to conventionally polymerized samples indicating the minimum slippage in the former. Finally, the stress-strain curves showed more than three times improvement in the Young's modulus of the composites fabricated using the NIR treatment in comparison to the conventional baking for both types of graphene. These results are compared to the carbon nanotube (CNT) counterparts in PDMS. The study provided insights on how to use stress-sensitive shifts in Raman spectroscopy for the development of advanced polymer composites. While NIR light induced polymerization showed increased load transfer and mechanical strength of nanotube and graphene polymer composites, investigation into two types of nano-carbon of different dimensionalities yielded extraordinary synergy between nano-carbons. Synergistic effects in binary mixtures of nano-carbon/polymer composites polymerized by NIR photon-assisted polymerization are observed. Small amounts of MWNT0.1 dispersed in RGO0.9/PDMS samples (subscripts represent weight percentage) reversed the sign of the Raman stress-sensitive wavenumbers from positive to negative values demonstrating the reversal of the lattice stress itself on applied uniaxial strain. A wavenumber change from 10 cm-1 in compression to 10 cm-1 in tension, and an increase in the Young's modulus of ~103% was observed for the MWNT0.1RGO0:9/PDMS with applied uniaxial tension. Extensive scanning electron microscopy measurement revealed the bridging of MWNT between two graphene plates in polymer composites. Mixing small amounts of MWNTs in RGO/PDMS eliminated the previously reported compressive deformation of RGO and significantly enhanced the load transfer and the mechanical strength of composites in tension. This is a direct indication of the cooperative effects of binary nano-carbons that produces an overall dramatic increase in load transfer (100% change). The orientation order of MWNTs with the application of uniaxial tensile strain directly affected the shift in the Raman wavenumbers (2D-band and G-band) and the load transfer. It is observed that the cooperative behavior of binary nano-carbons in polymer composites resulted in enhanced load transfer and mechanical strength. Such binary compositions could be fundamentally interesting for developing advanced composites such as nano-carbon based mixed dimensional systems. The NIR polymerization could be used to control aspects such as polymer chain entanglement between nano-carbons of different dimensional states, polymer chain lengths, mobility and eventual mechanical and electrical properties. At first it was thought that NIR light based polymerization only heated the nano-carbons and strengthened the interface, further studies using X-ray photoelectron spectroscopy (XPS) suggested other light induced bond formation was also responsible mechanism for improved interfacial strength, load transfer and mechanical properties. XPS data on RGO/polymer composites suggested activation of hydroxyl and carbonyl groups on the RGO that opens the carbon-carbon double bond of the PDMS oligomer thereby assisting in the formation of the C-O bonds between the PDMS matrix and the graphene filler. High absorption of NIR photons causes the free radical reaction between SiH group on PDMS crosslinker and hydroxyl/carbonyl groups on the RGO. The increase in the number of C-O and Si-O bonds at the graphene/polymer interface assists in the improved load transfer and eventual mechanical properties of the composites. This is the first such study which shows direct correlation between bond formation, load transfer and mechanical properties without degrading the interface. While surface chemical functionalization is attractive, past reports have shown that improvement in interfacial adhesion due to surface functionalization of nanotubes does not always promote improvement in mechanical properties. This is due to the surface degradation of nanotubes/graphene during functionalization process. Compared to these techniques, the NIR light induced technique is benign, environmentally friendly and also results in high interfacial shear strength, load transfer and excellent mechanical properties. As a demonstration of applications, PDMS/RGO/PDMS sandwiched structure strain sensor, a demo application of the NIR photon-assisted polymerization was investigated. High sensitivity and high Gauge Factor (GF) are addressed. These results shown in this dissertation suggest that the NIR photon-assisted polymerization can be practically developed as a scalable nanomanufacturing technique to create large panels of advanced composites with strong interface and better mechanical properties compared to conventional oven based heating methods. It also suggests that it is possible to fabricate large-scale flexible smart device like high sensitivity strain sensors.

Product Details :

Genre : Polymeric composites
Author : Peng Xu
Publisher :
Release : 2013
File : 181 Pages
ISBN-13 : OCLC:879276709


Polymer Fullerene Nanocomposites

eBook Download

BOOK EXCERPT:

Polymer/Fullerene Nanocomposites: Design and Applications synopsizes state-of-the-art essentials and versatile inventions in polymers and fullerenes derived nanocomposites. As the design, fabrication and exploration of polymeric materials with fullerenes in advanced nanomaterials is progressing quickly because of their unique combination of properties, including optical, electronic, electrical, mechanical, thermal, photovoltaic, sensing, shape memory, capacitive, antimicrobial, and other applications, this book fills a void in literature compilation and assessment for a field still in its infancy. The introductory chapter of this manuscript provides a comprehensive update on the fundamentals and applications of fullerenes, with following chapters revealing the properties and essential aspects of polymeric nanocomposites. - Reconnoiters state-of-the-art of fullerenes - Focuses on fullerene nano-additives, developing covalent interactions, and physical dispersion with conjugated polymers and other polymeric matrices - Emphasizes fullerene nanowhisker and nanoball nanofillers in nanocomposites - Unfolds advanced applications of polymer/fullerene nanomaterials in stimuli-responsive systems, optoelectronic devices (photovoltaics, light emitting diodes and optical sensors), fuel cells, supercapacitors and biomedical fields

Product Details :

Genre : Technology & Engineering
Author : Ayesha Kausar
Publisher : Elsevier
Release : 2023-01-10
File : 278 Pages
ISBN-13 : 9780323995160


Nanostructured Polymer Composites For Biomedical Applications

eBook Download

BOOK EXCERPT:

Nanostructured Polymer Composites for Biomedical Applications addresses the challenges researchers face regarding the creation of nanostructured polymer composites that not only have superior performance and mechanical properties, but also have acceptable biological function. This book discusses current efforts to meet this challenge by discussing the multidisciplinary nature of nanostructured polymer composite biomaterials from various fields, including materials science, polymer science, biomedical engineering and biomedicine. This compilation of existing knowledge will lead to the generation of new terminology and definitions across individual disciplines. As such, this book will help researchers and engineers develop new products and devices for use in effective medical treatment. Summarizes the most recent strategies to develop nanostructured polymer composite biomaterials for biomedicine Outlines the major preparation and characterization techniques for a range of polymer nanocomposites used in biomedicine Explores the design of new types of nanostructured polymer composites for applications in drug delivery, tissue engineering, gene therapy and bone replacement

Product Details :

Genre : Technology & Engineering
Author : Sarat Kumar Swain
Publisher : Elsevier
Release : 2019-06-15
File : 553 Pages
ISBN-13 : 9780128168929


Graphene To Polymer Graphene Nanocomposites

eBook Download

BOOK EXCERPT:

Graphene to Polymer/Graphene Nanocomposites: Emerging Research and Opportunities brings together the latest advances and cutting-edge methods in polymer/graphene nanocomposites that offer attractive properties and features, leading to a broad range of valuable applications. The initial chapters of this book explain preparation, properties, modification, and applications of graphene and graphene-based multifunctional polymeric nanocomposites. Later, the state-of-the-art potential of polymer/graphene nanocomposites for hierarchical nanofoams, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, etc., has been elucidated. The subsequent chapters focus on specific innovations and applications including stimuli-responsive graphene-based materials, anticorrosive coatings, applications in electronics and energy devices, gas separation and filtration membrane applications, aerospace applications, and biomedical applications. Throughout the book, challenges, and future opportunities in the field of polymer/graphene nanocomposites are discussed and analyzed. This is an important resource for researchers, scientists, and students/academics working with graphene and across the fields of polymer composites, nanomaterials, polymer science, chemistry, chemical engineering, biomedical engineering, materials science, and engineering, as well those in an industrial setting who are interested in graphene or innovative materials. - Explores the fundamentals, preparation, properties, processing, and applications of graphene and multifunctional polymer-graphene nanocomposites. - Focuses on the state of the art including topics such as nano-foam architectures, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, and other graphene nanostructures. - Provides advanced applications including shape memory materials, anticorrosion materials, electronics and energy devices, gas separation and filtration membranes, aerospace relevance, and biomedical applications.

Product Details :

Genre : Technology & Engineering
Author : Ayesha Kausar
Publisher : Elsevier
Release : 2021-09-23
File : 288 Pages
ISBN-13 : 9780323909389


Nano And Biocomposites

eBook Download

BOOK EXCERPT:

Advanced polymer-based nanocomposite materials continue to become increasingly popular and important for a wide range of engineering applications, as evidenced by continued government initiatives involving R&D and commercialization of these substances. In the race to exploit the unique mechanical, thermal, and electrical properties of nanocompo

Product Details :

Genre : Technology & Engineering
Author : Alan Kin-tak Lau
Publisher : CRC Press
Release : 2009-08-20
File : 406 Pages
ISBN-13 : 9781420080292


Shape Memory Polymer Derived Nanocomposites

eBook Download

BOOK EXCERPT:

Shape Memory Polymer derived Nanocomposites: Features to Cutting-Edge Advancements summarizes the up-to-date of fundamentals and applications of the shape memory polymer derived nanocomposites. Design and fabrication of shape memory polymeric nanocomposites have gained significant importance in the field of up-to-date nano/materials science and technology. In recent times, the shape memory polymers and nanocomposites have attracted considerable academic and industrial research interest. This feature book will present a state-of-the-art assessment on the versatile shape memory materials. The flexibility, durability, heat stability, shape deformability, and shape memory features of these polymers have shown dramatic improvements with the nanofiller addition. Appropriate choice of the stimuli-responsive polymer, nanofiller type and content, and fabrication strategies may lead to enhanced physicochemical features and stimuli-responsive performance. Several successful stimuli-responsive effects have been achieved in the shape memory nanocomposites such as thermo-responsive, electro-active, photo-active, water/moisture-responsive, pH-sensitive, etc. Consequently, the shape memory polymer based nanocomposites have found applications in high-tech devices and applications. This book initially offers a futuristic knowledge regarding indispensable features of the shape memory polymeric nanocomposites. Afterwards, the essential categories of the stimuli-responsive polymer-based nanocomposites have been discussed in terms of recent scientific literature. Subsequent sections of this book are dedicated to the potential of shape memory polymer-based nanocomposite in various technical fields. Significant application areas have been identified as foam materials, aerospace, radiation shielding, sensor, actuator, supercapacitor, electronics and biomedical relevance. The book chapters also point towards the predictable challenges and future opportunities in the field of shape memory nanocomposites. - Provides the essentials of shape memory polymeric nanocomposites - Includes important categories of shape memory nanocomposites - Presents current technological applications of shape memory polymers and derived nanocomposite in sponges, aerospace, EMI shielding, ionizing radiation shielding, sensors, actuator, supercapacitor, electronics, and biomedical fields

Product Details :

Genre : Technology & Engineering
Author : Ayesha Kausar
Publisher : Elsevier
Release : 2024-01-11
File : 318 Pages
ISBN-13 : 9780443185038


Polymeric Nanocomposites With Carbonaceous Nanofillers For Aerospace Applications

eBook Download

BOOK EXCERPT:

Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications offers a comprehensive paperback on the aerospace relevance of polymer/carbonaceous nanofiller-based nanocomposite. This manuscript summarizes all specific information on the design, fabrication and application areas of aerospace industry that employ polymer/carbonaceous nanofiller-based nanocomposites. In addition, it points to the potential of aeronautical nanocomposites towards lightning strike, radiation shielding, anti-corrosion, electronic/optical features, thermal management, antistatic application, self-healing aptitude, and green nanocomposites. The modeling of mechanical and essential properties of aerospace nanocomposites is also discussed, along with challenges and future forecasts of polymer/carbonaceous nanofiller nanocomposites. - Focuses on essential aerospace composites, carbonaceous nanofillers, and ensuing polymer/carbonaceous nanofiller-based nanocomposites - Explores indispensable properties of aeronautical nanocomposites, modeling of physical properties, and combined influence of carbonaceous nanofillers and carbon fibers on space material properties - Includes up-to-date technical applications of polymer/carbonaceous nanofiller-based nanocomposites in design, mechanical robustness, heat resistance, non-flammability, anti-corrosion, radiation shielding, lightning strike prevention, electronic/optical features, antistatic application, self-healing, thermal management, and green nanocomposites for aeronautical relevance

Product Details :

Genre : Technology & Engineering
Author : Ayesha Kausar
Publisher : Woodhead Publishing
Release : 2022-10-06
File : 369 Pages
ISBN-13 : 9780323996587


Biocomposite Materials

eBook Download

BOOK EXCERPT:

The book highlights the recent research developments in biocomposite design, mechanical performance and utility. It discusses innovative experimental approaches along with mechanical designs and manufacturing aspects of various fibrous polymer matrix composites and presents examples of the synthesis and development of biocomposites and their applications. It is useful for researchers developing biocomposite materials for biomedical and environmental applications.

Product Details :

Genre : Technology & Engineering
Author : Mohamed Thariq Hameed Sultan
Publisher : Springer Nature
Release : 2021-01-25
File : 345 Pages
ISBN-13 : 9789813340916