Applied Machine Learning For Healthcare And Life Sciences Using Aws

eBook Download

BOOK EXCERPT:

Build real-world artificial intelligence apps on AWS to overcome challenges faced by healthcare providers and payers, as well as pharmaceutical, life sciences research, and commercial organizations Key FeaturesLearn about healthcare industry challenges and how machine learning can solve themExplore AWS machine learning services and their applications in healthcare and life sciencesDiscover practical coding instructions to implement machine learning for healthcare and life sciencesBook Description While machine learning is not new, it's only now that we are beginning to uncover its true potential in the healthcare and life sciences industry. The availability of real-world datasets and access to better compute resources have helped researchers invent applications that utilize known AI techniques in every segment of this industry, such as providers, payers, drug discovery, and genomics. This book starts by summarizing the introductory concepts of machine learning and AWS machine learning services. You'll then go through chapters dedicated to each segment of the healthcare and life sciences industry. Each of these chapters has three key purposes -- First, to introduce each segment of the industry, its challenges, and the applications of machine learning relevant to that segment. Second, to help you get to grips with the features of the services available in the AWS machine learning stack like Amazon SageMaker and Amazon Comprehend Medical. Third, to enable you to apply your new skills to create an ML-driven solution to solve problems particular to that segment. The concluding chapters outline future industry trends and applications. By the end of this book, you'll be aware of key challenges faced in applying AI to healthcare and life sciences industry and learn how to address those challenges with confidence. What you will learnExplore the healthcare and life sciences industryFind out about the key applications of AI in different industry segmentsApply AI to medical images, clinical notes, and patient dataDiscover security, privacy, fairness, and explainability best practicesExplore the AWS ML stack and key AI services for the industryDevelop practical ML skills using code and AWS servicesDiscover all about industry regulatory requirementsWho this book is for This book is specifically tailored toward technology decision-makers, data scientists, machine learning engineers, and anyone who works in the data engineering role in healthcare and life sciences organizations. Whether you want to apply machine learning to overcome common challenges in the healthcare and life science industry or are looking to understand the broader industry AI trends and landscape, this book is for you. This book is filled with hands-on examples for you to try as you learn about new AWS AI concepts.

Product Details :

Genre : Computers
Author : Ujjwal Ratan
Publisher : Packt Publishing Ltd
Release : 2022-11-25
File : 224 Pages
ISBN-13 : 9781804619193


Applied Machine Learning And High Performance Computing On Aws

eBook Download

BOOK EXCERPT:

Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker Key FeaturesUnderstand the need for high-performance computing (HPC)Build, train, and deploy large ML models with billions of parameters using Amazon SageMakerLearn best practices and architectures for implementing ML at scale using HPCBook Description Machine learning (ML) and high-performance computing (HPC) on AWS run compute-intensive workloads across industries and emerging applications. Its use cases can be linked to various verticals, such as computational fluid dynamics (CFD), genomics, and autonomous vehicles. This book provides end-to-end guidance, starting with HPC concepts for storage and networking. It then progresses to working examples on how to process large datasets using SageMaker Studio and EMR. Next, you'll learn how to build, train, and deploy large models using distributed training. Later chapters also guide you through deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases. By the end of this book, you'll be able to build, train, and deploy your own large-scale ML application, using HPC on AWS, following industry best practices and addressing the key pain points encountered in the application life cycle. What you will learnExplore data management, storage, and fast networking for HPC applicationsFocus on the analysis and visualization of a large volume of data using SparkTrain visual transformer models using SageMaker distributed trainingDeploy and manage ML models at scale on the cloud and at the edgeGet to grips with performance optimization of ML models for low latency workloadsApply HPC to industry domains such as CFD, genomics, AV, and optimizationWho this book is for The book begins with HPC concepts, however, it expects you to have prior machine learning knowledge. This book is for ML engineers and data scientists interested in learning advanced topics on using large datasets for training large models using distributed training concepts on AWS, deploying models at scale, and performance optimization for low latency use cases. Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale will also find the book useful.

Product Details :

Genre : Computers
Author : Mani Khanuja
Publisher : Packt Publishing Ltd
Release : 2022-12-30
File : 382 Pages
ISBN-13 : 9781803244440


Applied Machine Learning For Healthcare And Life Sciences Using Aws

eBook Download

BOOK EXCERPT:

Build real-world artificial intelligence apps on AWS to overcome challenges faced by healthcare providers and payers, as well as pharmaceutical, life sciences research, and commercial organizations Key FeaturesLearn about healthcare industry challenges and how machine learning can solve themExplore AWS machine learning services and their applications in healthcare and life sciencesDiscover practical coding instructions to implement machine learning for healthcare and life sciencesBook Description While machine learning is not new, it's only now that we are beginning to uncover its true potential in the healthcare and life sciences industry. The availability of real-world datasets and access to better compute resources have helped researchers invent applications that utilize known AI techniques in every segment of this industry, such as providers, payers, drug discovery, and genomics. This book starts by summarizing the introductory concepts of machine learning and AWS machine learning services. You'll then go through chapters dedicated to each segment of the healthcare and life sciences industry. Each of these chapters has three key purposes -- First, to introduce each segment of the industry, its challenges, and the applications of machine learning relevant to that segment. Second, to help you get to grips with the features of the services available in the AWS machine learning stack like Amazon SageMaker and Amazon Comprehend Medical. Third, to enable you to apply your new skills to create an ML-driven solution to solve problems particular to that segment. The concluding chapters outline future industry trends and applications. By the end of this book, you'll be aware of key challenges faced in applying AI to healthcare and life sciences industry and learn how to address those challenges with confidence. What you will learnExplore the healthcare and life sciences industryFind out about the key applications of AI in different industry segmentsApply AI to medical images, clinical notes, and patient dataDiscover security, privacy, fairness, and explainability best practicesExplore the AWS ML stack and key AI services for the industryDevelop practical ML skills using code and AWS servicesDiscover all about industry regulatory requirementsWho this book is for This book is specifically tailored toward technology decision-makers, data scientists, machine learning engineers, and anyone who works in the data engineering role in healthcare and life sciences organizations. Whether you want to apply machine learning to overcome common challenges in the healthcare and life science industry or are looking to understand the broader industry AI trends and landscape, this book is for you. This book is filled with hands-on examples for you to try as you learn about new AWS AI concepts.

Product Details :

Genre : Computers
Author : Ujjwal Ratan
Publisher : Packt Publishing Ltd
Release : 2022-11-25
File : 224 Pages
ISBN-13 : 9781804619193


Machine Learning In Biological Sciences

eBook Download

BOOK EXCERPT:

This book gives an overview of applications of Machine Learning (ML) in diverse fields of biological sciences, including healthcare, animal sciences, agriculture, and plant sciences. Machine learning has major applications in process modelling, computer vision, signal processing, speech recognition, and language understanding and processing and life, and health sciences. It is increasingly used in understanding DNA patterns and in precision medicine. This book is divided into eight major sections, each containing chapters that describe the application of ML in a certain field. The book begins by giving an introduction to ML and the various ML methods. It then covers interesting and timely aspects such as applications in genetics, cell biology, the study of plant-pathogen interactions, and animal behavior. The book discusses computational methods for toxicity prediction of environmental chemicals and drugs, which forms a major domain of research in the field of biology. It is of relevance to post-graduate students and researchers interested in exploring the interdisciplinary areas of use of machine learning and deep learning in life sciences.

Product Details :

Genre : Medical
Author : Shyamasree Ghosh
Publisher : Springer Nature
Release : 2022-05-04
File : 337 Pages
ISBN-13 : 9789811688812


Machine Learning In Biotechnology And Life Sciences

eBook Download

BOOK EXCERPT:

Explore all the tools and templates needed for data scientists to drive success in their biotechnology careers with this comprehensive guide Key FeaturesLearn the applications of machine learning in biotechnology and life science sectorsDiscover exciting real-world applications of deep learning and natural language processingUnderstand the general process of deploying models to cloud platforms such as AWS and GCPBook Description The booming fields of biotechnology and life sciences have seen drastic changes over the last few years. With competition growing in every corner, companies around the globe are looking to data-driven methods such as machine learning to optimize processes and reduce costs. This book helps lab scientists, engineers, and managers to develop a data scientist's mindset by taking a hands-on approach to learning about the applications of machine learning to increase productivity and efficiency in no time. You'll start with a crash course in Python, SQL, and data science to develop and tune sophisticated models from scratch to automate processes and make predictions in the biotechnology and life sciences domain. As you advance, the book covers a number of advanced techniques in machine learning, deep learning, and natural language processing using real-world data. By the end of this machine learning book, you'll be able to build and deploy your own machine learning models to automate processes and make predictions using AWS and GCP. What you will learnGet started with Python programming and Structured Query Language (SQL)Develop a machine learning predictive model from scratch using PythonFine-tune deep learning models to optimize their performance for various tasksFind out how to deploy, evaluate, and monitor a model in the cloudUnderstand how to apply advanced techniques to real-world dataDiscover how to use key deep learning methods such as LSTMs and transformersWho this book is for This book is for data scientists and scientific professionals looking to transcend to the biotechnology domain. Scientific professionals who are already established within the pharmaceutical and biotechnology sectors will find this book useful. A basic understanding of Python programming and beginner-level background in data science conjunction is needed to get the most out of this book.

Product Details :

Genre : Mathematics
Author : Saleh Alkhalifa
Publisher : Packt Publishing Ltd
Release : 2022-01-28
File : 408 Pages
ISBN-13 : 9781801815673


Deep Learning For The Life Sciences

eBook Download

BOOK EXCERPT:

Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working

Product Details :

Genre : Science
Author : Bharath Ramsundar
Publisher : "O'Reilly Media, Inc."
Release : 2019-04-10
File : 244 Pages
ISBN-13 : 9781492039785


Ai And Blockchain In Healthcare

eBook Download

BOOK EXCERPT:

This book presents state-of-the-art blockchain and AI advances in health care. Healthcare service is increasingly creating the scope for blockchain and AI applications to enter the biomedical and healthcare world. Today, blockchain, AI, ML, and deep learning are affecting every domain. Through its cutting-edge applications, AI and ML are helping transform the healthcare industry for the better. Blockchain is a decentralization communication platform that has the potential to decentralize the way we store data and manage information. Blockchain technology has potential to reduce the role of middleman, one of the most important regulatory actors in our society. Transactions are simultaneously secure and trustworthy due to the use of cryptographic principles. In recent years, blockchain technology has become very trendy and has penetrated different domains, mostly due to the popularity of cryptocurrencies. One field where blockchain technology has tremendous potential is health care, due to the need for a more patient-centric approach in healthcare systems to connect disparate systems and to increase the accuracy of electronic healthcare records (EHRs).

Product Details :

Genre : Computers
Author : Bipin Kumar Rai
Publisher : Springer Nature
Release : 2023-04-30
File : 241 Pages
ISBN-13 : 9789819903771


Data Science On Aws

eBook Download

BOOK EXCERPT:

With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

Product Details :

Genre : Computers
Author : Chris Fregly
Publisher : "O'Reilly Media, Inc."
Release : 2021-04-07
File : 524 Pages
ISBN-13 : 9781492079347


Applied Data Science

eBook Download

BOOK EXCERPT:

This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.

Product Details :

Genre : Computers
Author : Martin Braschler
Publisher : Springer
Release : 2019-06-13
File : 464 Pages
ISBN-13 : 9783030118211


Machine Learning And Systems Biology In Genomics And Health

eBook Download

BOOK EXCERPT:

This book discusses the application of machine learning in genomics. Machine Learning offers ample opportunities for Big Data to be assimilated and comprehended effectively using different frameworks. Stratification, diagnosis, classification and survival predictions encompass the different health care regimes representing unique challenges for data pre-processing, model training, refinement of the systems with clinical implications. The book discusses different models for in-depth analysis of different conditions. Machine Learning techniques have revolutionized genomic analysis. Different chapters of the book describe the role of Artificial Intelligence in clinical and genomic diagnostics. It discusses how systems biology is exploited in identifying the genetic markers for drug discovery and disease identification. Myriad number of diseases whether be infectious, metabolic, cancer can be dealt in effectively which combines the different omics data for precision medicine. Major breakthroughs in the field would help reflect more new innovations which are at their pinnacle stage. This book is useful for researchers in the fields of genomics, genetics, computational biology and bioinformatics.

Product Details :

Genre : Science
Author : Shailza Singh
Publisher : Springer Nature
Release : 2022-02-04
File : 239 Pages
ISBN-13 : 9789811659935