Applied Missing Data Analysis In The Health Sciences

eBook Download

BOOK EXCERPT:

Applied Missing Data Analysis in the Health Sciences A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.

Product Details :

Genre : Medical
Author : Xiao-Hua Zhou
Publisher : John Wiley & Sons
Release : 2014-05-19
File : 260 Pages
ISBN-13 : 9781118573648


Applied Mixed Models In Medicine

eBook Download

BOOK EXCERPT:

A fully updated edition of this key text on mixed models, focusing on applications in medical research The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. A mixed model allows the incorporation of both fixed and random variables within a statistical analysis, enabling efficient inferences and more information to be gained from the data. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This third edition of Brown and Prescott’s groundbreaking text provides an update on the latest developments, and includes guidance on the use of current SAS techniques across a wide range of applications. Presents an overview of the theory and applications of mixed models in medical research, including the latest developments and new sections on incomplete block designs and the analysis of bilateral data. Easily accessible to practitioners in any area where mixed models are used, including medical statisticians and economists. Includes numerous examples using real data from medical and health research, and epidemiology, illustrated with SAS code and output. Features the new version of SAS, including new graphics for model diagnostics and the procedure PROC MCMC. Supported by a website featuring computer code, data sets, and further material. This third edition will appeal to applied statisticians working in medical research and the pharmaceutical industry, as well as teachers and students of statistics courses in mixed models. The book will also be of great value to a broad range of scientists, particularly those working in the medical and pharmaceutical areas.

Product Details :

Genre : Medical
Author : Helen Brown
Publisher : John Wiley & Sons
Release : 2014-12-12
File : 548 Pages
ISBN-13 : 9781118778241


Applied Missing Data Analysis

eBook Download

BOOK EXCERPT:

This book has been replaced by Applied Missing Data Analysis, Second Edition, ISBN 978-1-4625-4986-3.

Product Details :

Genre : Psychology
Author : Craig K. Enders
Publisher : Guilford Press
Release : 2010-04-23
File : 400 Pages
ISBN-13 : 9781606236406


Individual Participant Data Meta Analysis

eBook Download

BOOK EXCERPT:

Individual Participant Data Meta-Analysis: A Handbook for Healthcare Research provides a comprehensive introduction to the fundamental principles and methods that healthcare researchers need when considering, conducting or using individual participant data (IPD) meta-analysis projects. Written and edited by researchers with substantial experience in the field, the book details key concepts and practical guidance for each stage of an IPD meta-analysis project, alongside illustrated examples and summary learning points. Split into five parts, the book chapters take the reader through the journey from initiating and planning IPD projects to obtaining, checking, and meta-analysing IPD, and appraising and reporting findings. The book initially focuses on the synthesis of IPD from randomised trials to evaluate treatment effects, including the evaluation of participant-level effect modifiers (treatment-covariate interactions). Detailed extension is then made to specialist topics such as diagnostic test accuracy, prognostic factors, risk prediction models, and advanced statistical topics such as multivariate and network meta-analysis, power calculations, and missing data. Intended for a broad audience, the book will enable the reader to: Understand the advantages of the IPD approach and decide when it is needed over a conventional systematic review Recognise the scope, resources and challenges of IPD meta-analysis projects Appreciate the importance of a multi-disciplinary project team and close collaboration with the original study investigators Understand how to obtain, check, manage and harmonise IPD from multiple studies Examine risk of bias (quality) of IPD and minimise potential biases throughout the project Understand fundamental statistical methods for IPD meta-analysis, including two-stage and one-stage approaches (and their differences), and statistical software to implement them Clearly report and disseminate IPD meta-analyses to inform policy, practice and future research Critically appraise existing IPD meta-analysis projects Address specialist topics such as effect modification, multiple correlated outcomes, multiple treatment comparisons, non-linear relationships, test accuracy at multiple thresholds, multiple imputation, and developing and validating clinical prediction models Detailed examples and case studies are provided throughout.

Product Details :

Genre : Medical
Author : Richard D. Riley
Publisher : John Wiley & Sons
Release : 2021-05-24
File : 38 Pages
ISBN-13 : 9781119333753


Flexible Imputation Of Missing Data Second Edition

eBook Download

BOOK EXCERPT:

Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Product Details :

Genre : Mathematics
Author : Stef van Buuren
Publisher : CRC Press
Release : 2018-07-17
File : 444 Pages
ISBN-13 : 9780429960352


Data Monitoring Committees In Clinical Trials

eBook Download

BOOK EXCERPT:

The authoritative guide for Data Monitoring Committees—fully revised and updated The number of clinical trials sponsored by government agencies and pharmaceutical companies has grown in recent years, prompting an increased need for interim monitoring of data on safety and efficacy. Data Monitoring Committees (DMCs) are an essential component of many clinical trials, safeguarding trial participants and protecting the credibility and validity of the study. Data Monitoring Committees in Clinical Trials: A Practical Perspective, 2nd Edition offers practical advice for those managing and conducting clinical trials and serving on Data Monitoring Committees, providing a practical overview of the establishment, purpose, and responsibilities of these committees. Examination of topics such as the composition and independence of DMCs, statistical, philosophical and ethical considerations, and determining when a DMC is needed, presents readers with a comprehensive foundational knowledge of clinical trial oversight. Providing recent examples to illustrate DMC principles, this fully-updated guide reflects current developments and practices in clinical trial oversight and offers expanded coverage of emerging issues and challenges in the field. This new second edition covers the most current information on DMC policies, issues in monitoring trials using new designs, and recent trial publications relevant to DMC decision-making. • Presents practical advice for those managing and conducting clinical trials and serving on Data Monitoring Committees • Illustrates the types of challenging issues Data Monitoring Committees face in practical situations • Provides updated and expanded coverage of topics including regulatory and funding agency guidelines and trial designs and their associated demands and limitations • Includes a new chapter addressing legal issues that affect DMC members and discusses general litigation concerns relevant to clinical research • Expands treatment of current journal publications addressing DMC issues Data Monitoring Committees in Clinical Trials: A Practical Perspective, 2nd Edition is a must-have text for anyone engaged in DMC activities as well as trial sponsors, clinical trial researchers, regulatory and bioethics professionals, and those associated with clinical trials in academic, government and industry settings.

Product Details :

Genre : Medical
Author : Susan S. Ellenberg
Publisher : John Wiley & Sons
Release : 2019-01-15
File : 284 Pages
ISBN-13 : 9781119512677


Statistical Methods For Evaluating Safety In Medical Product Development

eBook Download

BOOK EXCERPT:

This book gives professionals in clinical research valuable information on the challenging issues of the design, execution, and management of clinical trials, and how to resolve these issues effectively. It also provides understanding and practical guidance on the application of contemporary statistical methods to contemporary issues in safety evaluation during medical product development. Each chapter provides sufficient detail to the reader to undertake the design and analysis of experiments at various stages of product development, including comprehensive references to the relevant literature. Provides a guide to statistical methods and application in medical product development Assists readers in undertaking design and analysis of experiments at various stages of product development Features case studies throughout the book, as well as, SAS and R code

Product Details :

Genre : Medical
Author : A. Lawrence Gould
Publisher : John Wiley & Sons
Release : 2014-12-08
File : 392 Pages
ISBN-13 : 9781118763094


Network Meta Analysis For Decision Making

eBook Download

BOOK EXCERPT:

A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.

Product Details :

Genre : Mathematics
Author : Sofia Dias
Publisher : John Wiley & Sons
Release : 2018-03-19
File : 484 Pages
ISBN-13 : 9781118647509


Crossover Designs

eBook Download

BOOK EXCERPT:

A comprehensive and practical resource for analyses of crossover designs For ethical reasons, it is vital to keep the number of patients in a clinical trial as low as possible. As evidenced by extensive research publications, crossover design can be a useful and powerful tool to reduce the number of patients needed for a parallel group design in studying treatments for non-curable chronic diseases. This book introduces commonly-used and well-established statistical tests and estimators in epidemiology that can easily be applied to hypothesis testing and estimation of the relative treatment effect for various types of data scale in crossover designs. Models with distribution-free random effects are assumed and hence most approaches considered here are semi-parametric. The book provides clinicians and biostatisticians with the exact test procedures and exact interval estimators, which are applicable even when the number of patients in a crossover trial is small. Systematic discussion on sample size determination is also included, which will be a valuable resource for researchers involved in crossover trial design. Key features: Provides exact test procedures and interval estimators, which are especially of use in small-sample cases. Presents most test procedures and interval estimators in closed-forms, enabling readers to calculate them by use of a pocket calculator or commonly-used statistical packages. Each chapter is self-contained, allowing the book to be used a reference resource. Uses real-life examples to illustrate the practical use of test procedures and estimators Provides extensive exercises to help readers appreciate the underlying theory, learn other relevant test procedures and understand how to calculate the required sample size. Crossover Designs: Testing, Estimation and Sample Size will be a useful resource for researchers from biostatistics, as well as pharmaceutical and clinical sciences. It can also be used as a textbook or reference for graduate students studying clinical experiments.

Product Details :

Genre : Medical
Author : Kung-Jong Lui
Publisher : John Wiley & Sons
Release : 2016-08-08
File : 248 Pages
ISBN-13 : 9781119114697


Weight Of Evidence For Forensic Dna Profiles

eBook Download

BOOK EXCERPT:

DNA evidence is widely used in the modern justice system. Statistical methodology plays a key role in ensuring that this evidence is collected, interpreted, analysed and presented correctly. This book is a guide to assessing DNA evidence and presenting that evidence in a courtroom setting. It offers practical guidance to forensic scientists with little dependence on mathematical ability, and provides the scientist with the understanding they require to apply the methods in their work. Since the publication of the first edition of this book in 2005 there have been many incremental changes, and one dramatic change which is the emergence of low template DNA (LTDNA) profiles. This second edition is edited and expanded to cover the basics of LTDNA technology. The author's own open-source R code likeLTD is described and used for worked examples in the book. Commercial and free software are also covered.

Product Details :

Genre : Mathematics
Author : David J. Balding
Publisher : John Wiley & Sons
Release : 2015-07-20
File : 233 Pages
ISBN-13 : 9781118814550