Basic Partial Differential Equations

eBook Download

BOOK EXCERPT:

Methods of solution for partial differential equations (PDEs) used in mathematics, science, and engineering are clarified in this self-contained source. The reader will learn how to use PDEs to predict system behaviour from an initial state of the system and from external influences, and enhance the success of endeavours involving reasonably smooth, predictable changes of measurable quantities. This text enables the reader to not only find solutions of many PDEs, but also to interpret and use these solutions. It offers 6000 exercises ranging from routine to challenging. The palatable, motivated proofs enhance understanding and retention of the material. Topics not usually found in books at this level include but examined in this text: the application of linear and nonlinear first-order PDEs to the evolution of population densities and to traffic shocks convergence of numerical solutions of PDEs and implementation on a computer convergence of Laplace series on spheres quantum mechanics of the hydrogen atom solving PDEs on manifolds The text requires some knowledge of calculus but none on differential equations or linear algebra.

Product Details :

Genre : Mathematics
Author : David. Bleecker
Publisher : CRC Press
Release : 2018-01-18
File : 765 Pages
ISBN-13 : 9781351078535


Essential Partial Differential Equations

eBook Download

BOOK EXCERPT:

This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.

Product Details :

Genre : Mathematics
Author : David F. Griffiths
Publisher : Springer
Release : 2015-09-24
File : 370 Pages
ISBN-13 : 9783319225692


Introduction To Partial Differential Equations

eBook Download

BOOK EXCERPT:

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Product Details :

Genre : Mathematics
Author : Peter J. Olver
Publisher : Springer Science & Business Media
Release : 2013-11-08
File : 636 Pages
ISBN-13 : 9783319020990


Applied Partial Differential Equations

eBook Download

BOOK EXCERPT:

This text is written for the standard, one-semester, undergraduate course in elementary partial differential equations. The topics include derivations of some of the standard equations of mathematical physics (including the heat equation, the wave equation, and Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions, or separation of variables, and methods based on Fourier and Laplace transforms.

Product Details :

Genre : Mathematics
Author : J. David Logan
Publisher : Springer Science & Business Media
Release : 2004-05-11
File : 228 Pages
ISBN-13 : 0387209530


Partial Differential Equations I

eBook Download

BOOK EXCERPT:

The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.

Product Details :

Genre : Mathematics
Author : Michael E. Taylor
Publisher : Springer Science & Business Media
Release : 2010-10-29
File : 673 Pages
ISBN-13 : 9781441970558


Methods For Partial Differential Equations

eBook Download

BOOK EXCERPT:

This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.

Product Details :

Genre : Mathematics
Author : Marcelo R. Ebert
Publisher : Birkhäuser
Release : 2018-02-23
File : 473 Pages
ISBN-13 : 9783319664569


Partial Differential Equations In Mechanics 1

eBook Download

BOOK EXCERPT:

This two-volume work focuses on partial differential equations (PDEs) with important applications in mechanical and civil engineering, emphasizing mathematical correctness, analysis, and verification of solutions. The presentation involves a discussion of relevant PDE applications, its derivation, and the formulation of consistent boundary conditions.

Product Details :

Genre : Technology & Engineering
Author : A.P.S. Selvadurai
Publisher : Springer Science & Business Media
Release : 2013-04-17
File : 610 Pages
ISBN-13 : 9783662040065


Numerical Methods For Elliptic And Parabolic Partial Differential Equations

eBook Download

BOOK EXCERPT:

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Product Details :

Genre : Mathematics
Author : Peter Knabner
Publisher : Springer Science & Business Media
Release : 2006-05-26
File : 437 Pages
ISBN-13 : 9780387217628


Partial Differential Equations In Mechanics 2

eBook Download

BOOK EXCERPT:

This two-volume work focuses on partial differential equations (PDEs) with important applications in mechanical and civil engineering, emphasizing mathematical correctness, analysis, and verification of solutions. The presentation involves a discussion of relevant PDE applications, its derivation, and the formulation of consistent boundary conditions.

Product Details :

Genre : Technology & Engineering
Author : A.P.S. Selvadurai
Publisher : Springer Science & Business Media
Release : 2013-06-29
File : 713 Pages
ISBN-13 : 9783662092057


Partial Differential Equations And Boundary Value Problems With Applications

eBook Download

BOOK EXCERPT:

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Product Details :

Genre : Mathematics
Author : Mark A. Pinsky
Publisher : American Mathematical Soc.
Release : 2011
File : 545 Pages
ISBN-13 : 9780821868898