WELCOME TO THE LIBRARY!!!
What are you looking for Book "Bayesian And High Dimensional Global Optimization" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Accessible to a variety of readers, this book is of interest to specialists, graduate students and researchers in mathematics, optimization, computer science, operations research, management science, engineering and other applied areas interested in solving optimization problems. Basic principles, potential and boundaries of applicability of stochastic global optimization techniques are examined in this book. A variety of issues that face specialists in global optimization are explored, such as multidimensional spaces which are frequently ignored by researchers. The importance of precise interpretation of the mathematical results in assessments of optimization methods is demonstrated through examples of convergence in probability of random search. Methodological issues concerning construction and applicability of stochastic global optimization methods are discussed, including the one-step optimal average improvement method based on a statistical model of the objective function. A significant portion of this book is devoted to an analysis of high-dimensional global optimization problems and the so-called ‘curse of dimensionality’. An examination of the three different classes of high-dimensional optimization problems, the geometry of high-dimensional balls and cubes, very slow convergence of global random search algorithms in large-dimensional problems , and poor uniformity of the uniformly distributed sequences of points are included in this book.
Product Details :
Genre |
: Mathematics |
Author |
: Anatoly Zhigljavsky |
Publisher |
: Springer Nature |
Release |
: 2021-03-02 |
File |
: 125 Pages |
ISBN-13 |
: 9783030647124 |
eBook Download
BOOK EXCERPT:
This book presents the state-of-the-art, current challenges, and future perspectives for the field of many-criteria optimization and decision analysis. The field recognizes that real-life problems often involve trying to balance a multiplicity of considerations simultaneously – such as performance, cost, risk, sustainability, and quality. The field develops theory, methods and tools that can support decision makers in finding appropriate solutions when faced with many (typically more than three) such criteria at the same time. The book consists of two parts: key research topics, and emerging topics. Part I begins with a general introduction to many-criteria optimization, perspectives from research leaders in real-world problems, and a contemporary survey of the attributes of problems of this kind. This part continues with chapters on fundamental aspects of many-criteria optimization, namely on order relations, quality measures, benchmarking, visualization, and theoretical considerations. Part II offers more specialized chapters on correlated objectives, heterogeneous objectives, Bayesian optimization, and game theory. Written by leading experts across the field of many-criteria optimization, this book will be an essential resource for researchers in the fields of evolutionary computing, operations research, multiobjective optimization, and decision science.
Product Details :
Genre |
: Computers |
Author |
: Dimo Brockhoff |
Publisher |
: Springer Nature |
Release |
: 2023-07-28 |
File |
: 364 Pages |
ISBN-13 |
: 9783031252631 |
eBook Download
BOOK EXCERPT:
Third edition of International Conference on Intelligent Computing and Optimization and as a premium fruit, this book, pursue to gather research leaders, experts and scientists on Intelligent Computing and Optimization to share knowledge, experience and current research achievements. Conference and book provide a unique opportunity for the global community to interact and share novel research results, explorations and innovations among colleagues and friends. This book is published by SPRINGER, Advances in Intelligent Systems and Computing. Ca. 100 authors submitted full papers to ICO’2020. That global representation demonstrates the growing interest of the research community here. The book covers innovative and creative research on sustainability, smart cities, meta-heuristics optimization, cyber-security, block chain, big data analytics, IoTs, renewable energy, artificial intelligence, Industry 4.0, modeling and simulation. We editors thank all authors and reviewers for their important service. Best high-quality papers have been selected by the International PC for our premium series with SPRINGER.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Pandian Vasant |
Publisher |
: Springer Nature |
Release |
: 2021-02-07 |
File |
: 1332 Pages |
ISBN-13 |
: 9783030681548 |
eBook Download
BOOK EXCERPT:
This book disseminates and promotes the recent research progress and frontier development on AutoML and meta-learning as well as their applications on computer vision, natural language processing, multimedia and data mining related fields. These are exciting and fast-growing research directions in the general field of machine learning. The authors advocate novel, high-quality research findings, and innovative solutions to the challenging problems in AutoML and meta-learning. This topic is at the core of the scope of artificial intelligence, and is attractive to audience from both academia and industry. This book is highly accessible to the whole machine learning community, including: researchers, students and practitioners who are interested in AutoML, meta-learning, and their applications in multimedia, computer vision, natural language processing and data mining related tasks. The book is self-contained and designed for introductory and intermediate audiences. No special prerequisite knowledge is required to read this book.
Product Details :
Genre |
: Computers |
Author |
: Wenwu Zhu |
Publisher |
: Springer Nature |
Release |
: 2022-01-01 |
File |
: 240 Pages |
ISBN-13 |
: 9783030881320 |
eBook Download
BOOK EXCERPT:
Machine Learning for Materials Science provides the fundamentals and useful insight into where Machine Learning (ML) will have the greatest impact for the materials science researcher. This digital primer provides example methods for ML applied to experiments and simulations, including the early stages of building an ML solution for a materials science problem, concentrating on where and how to get data and some of the considerations when choosing an approach. The authors demonstrate how to build more robust models, how to make sure that your colleagues trust the results, and how to use ML to accelerate or augment simulations, by introducing methods in which ML can be applied to analyze and process experimental data. They also cover how to build integrated closed-loop experiments where ML is used to plan the course of a materials optimization experiment and how ML can be utilized in the discovery of materials on computers.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Keith T. Butler |
Publisher |
: American Chemical Society |
Release |
: 2022-06-16 |
File |
: 176 Pages |
ISBN-13 |
: 9780841299467 |
eBook Download
BOOK EXCERPT:
This two-volume set LNCS 13398 and LNCS 13399 constitutes the refereed proceedings of the 17th International Conference on Parallel Problem Solving from Nature, PPSN 2022, held in Dortmund, Germany, in September 2022. The 87 revised full papers were carefully reviewed and selected from numerous submissions. The conference presents a study of computing methods derived from natural models. Amorphous Computing, Artificial Life, Artificial Ant Systems, Artificial Immune Systems, Artificial Neural Networks, Cellular Automata, Evolutionary Computation, Swarm Computing, Self-Organizing Systems, Chemical Computation, Molecular Computation, Quantum Computation, Machine Learning, and Artificial Intelligence approaches using Natural Computing methods are just some of the topics covered in this field.
Product Details :
Genre |
: Computers |
Author |
: Günter Rudolph |
Publisher |
: Springer Nature |
Release |
: 2022-08-13 |
File |
: 632 Pages |
ISBN-13 |
: 9783031147142 |
eBook Download
BOOK EXCERPT:
This book constitutes the refereed post-conference proceedings of 9 workshops held at the 35th International ISC High Performance 2021 Conference, in Frankfurt, Germany, in June-July 2021: Second International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics and Solid Mechanics Simulations and Analysis; HPC-IODC: HPC I/O in the Data Center Workshop; Compiler-assisted Correctness Checking and Performance Optimization for HPC; Machine Learning on HPC Systems;4th International Workshop on Interoperability of Supercomputing and Cloud Technologies;2nd International Workshop on Monitoring and Operational Data Analytics;16th Workshop on Virtualization in High-Performance Cloud Computing; Deep Learning on Supercomputers; 5th International Workshop on In Situ Visualization. The 35 papers included in this volume were carefully reviewed and selected. They cover all aspects of research, development, and application of large-scale, high performance experimental and commercial systems. Topics include high-performance computing (HPC), computer architecture and hardware, programming models, system software, performance analysis and modeling, compiler analysis and optimization techniques, software sustainability, scientific applications, deep learning.
Product Details :
Genre |
: Computers |
Author |
: Heike Jagode |
Publisher |
: Springer Nature |
Release |
: 2021-11-12 |
File |
: 515 Pages |
ISBN-13 |
: 9783030905392 |
eBook Download
BOOK EXCERPT:
This book constitutes the refereed proceedings of the 21st International Conference on Principles and Practice of Multi-Agent Systems, PRIMA 2018, held in Tokyo, Japan, in October/November 2018. The 27 full papers presented and 31 short papers were carefully reviewed and selected from 103 submissions. PRIMA presents subjects in many application domains, particularly in e-commerce, and also in planning, logistics, manufacturing, robotics, decision support, transportation, entertainment, emergency relief and disaster management, and data mining and analytics.
Product Details :
Genre |
: Computers |
Author |
: Tim Miller |
Publisher |
: Springer |
Release |
: 2018-10-23 |
File |
: 687 Pages |
ISBN-13 |
: 9783030030988 |
eBook Download
BOOK EXCERPT:
This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.
Product Details :
Genre |
: Mathematics |
Author |
: Panos M. Pardalos |
Publisher |
: Springer Nature |
Release |
: 2021-05-27 |
File |
: 388 Pages |
ISBN-13 |
: 9783030665159 |
eBook Download
BOOK EXCERPT:
Bayesian optimization is a methodology for optimizing expensive objective functions that has proven success in the sciences, engineering, and beyond. This timely text provides a self-contained and comprehensive introduction to the subject, starting from scratch and carefully developing all the key ideas along the way. This bottom-up approach illuminates unifying themes in the design of Bayesian optimization algorithms and builds a solid theoretical foundation for approaching novel situations. The core of the book is divided into three main parts, covering theoretical and practical aspects of Gaussian process modeling, the Bayesian approach to sequential decision making, and the realization and computation of practical and effective optimization policies. Following this foundational material, the book provides an overview of theoretical convergence results, a survey of notable extensions, a comprehensive history of Bayesian optimization, and an extensive annotated bibliography of applications.
Product Details :
Genre |
: Computers |
Author |
: Roman Garnett |
Publisher |
: Cambridge University Press |
Release |
: 2023-01-31 |
File |
: 376 Pages |
ISBN-13 |
: 9781108623551 |