Berkovich Spaces And Applications

eBook Download

BOOK EXCERPT:

We present an introduction to Berkovich’s theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to étale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Rémy, A. Thuillier and A. Werner provide an overview of their work on the compactification of Bruhat-Tits buildings using Berkovich analytic geometry. The third and final part explores the relationship between non-archimedean geometry and dynamics. A contribution by M. Jonsson contains a thorough discussion of non-archimedean dynamical systems in dimension 1 and 2. Finally a survey by J.-P. Otal gives an account of Morgan-Shalen's theory of compactification of character varieties. This book will provide the reader with enough material on the basic concepts and constructions related to Berkovich spaces to move on to more advanced research articles on the subject. We also hope that the applications presented here will inspire the reader to discover new settings where these beautiful and intricate objects might arise.

Product Details :

Genre : Mathematics
Author : Antoine Ducros
Publisher : Springer
Release : 2014-11-21
File : 432 Pages
ISBN-13 : 9783319110295


 P Adic Geometry

eBook Download

BOOK EXCERPT:

"In recent decades, p-adic geometry and p-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter Schoo1 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject." "Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the p-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the p-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and p-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya discusses theoretical and computational aspects of p-adic cohomology and the zeta functions of varieties. This book will be a welcome addition to the library of any graduate student and researcher who is interested in learning about the techniques of p-adic geometry."--BOOK JACKET.

Product Details :

Genre : Mathematics
Author : Matthew Baker
Publisher : American Mathematical Soc.
Release : 2008
File : 220 Pages
ISBN-13 : 9780821844687


Valuation Theory And Its Applications

eBook Download

BOOK EXCERPT:

This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.

Product Details :

Genre : Mathematics
Author : Franz-Viktor Kuhlmann
Publisher : American Mathematical Soc.
Release : 2002-01-01
File : 470 Pages
ISBN-13 : 0821871390


Arithmetic And Geometry Over Local Fields

eBook Download

BOOK EXCERPT:

This volume introduces some recent developments in Arithmetic Geometry over local fields. Its seven chapters are centered around two common themes: the study of Drinfeld modules and non-Archimedean analytic geometry. The notes grew out of lectures held during the research program "Arithmetic and geometry of local and global fields" which took place at the Vietnam Institute of Advanced Study in Mathematics (VIASM) from June to August 2018. The authors, leading experts in the field, have put great effort into making the text as self-contained as possible, introducing the basic tools of the subject. The numerous concrete examples and suggested research problems will enable graduate students and young researchers to quickly reach the frontiers of this fascinating branch of mathematics.

Product Details :

Genre : Mathematics
Author : Bruno Anglès
Publisher : Springer Nature
Release : 2021-03-03
File : 337 Pages
ISBN-13 : 9783030662493


Nonlinear Analysis Geometry And Applications

eBook Download

BOOK EXCERPT:

This book gathers nineteen papers presented at the first NLAGA-BIRS Symposium, which was held at the Cheikh Anta Diop University in Dakar, Senegal, on June 24–28, 2019. The four-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometrical analysis of optimal shapes, geometric structures, optimization and optimal transportation, control theory, and mathematical modeling.

Product Details :

Genre : Mathematics
Author : Diaraf Seck
Publisher : Springer Nature
Release : 2020-11-20
File : 462 Pages
ISBN-13 : 9783030573362


Nonarchimedean And Tropical Geometry

eBook Download

BOOK EXCERPT:

This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.

Product Details :

Genre : Mathematics
Author : Matthew Baker
Publisher : Springer
Release : 2016-08-18
File : 534 Pages
ISBN-13 : 9783319309453


Potential Theory And Dynamics On The Berkovich Projective Line

eBook Download

BOOK EXCERPT:

The purpose of this book is to develop the foundations of potential theory and rational dynamics on the Berkovich projective line over an arbitrary complete, algebraically closed non-Archimedean field. In addition to providing a concrete and ``elementary'' introduction to Berkovich analytic spaces and to potential theory and rational iteration on the Berkovich line, the book contains applications to arithmetic geometry and arithmetic dynamics. A number of results in the book are new, and most have not previously appeared in book form. Three appendices--on analysis, $\mathbb{R}$-trees, and Berkovich's general theory of analytic spaces--are included to make the book as self-contained as possible. The authors first give a detailed description of the topological structure of the Berkovich projective line and then introduce the Hsia kernel, the fundamental kernel for potential theory. Using the theory of metrized graphs, they define a Laplacian operator on the Berkovich line and construct theories of capacities, harmonic and subharmonic functions, and Green's functions, all of which are strikingly similar to their classical complex counterparts. After developing a theory of multiplicities for rational functions, they give applications to non-Archimedean dynamics, including local and global equidistribution theorems, fixed point theorems, and Berkovich space analogues of many fundamental results from the classical Fatou-Julia theory of rational iteration. They illustrate the theory with concrete examples and exposit Rivera-Letelier's results concerning rational dynamics over the field of $p$-adic complex numbers. They also establish Berkovich space versions of arithmetic results such as the Fekete-Szego theorem and Bilu's equidistribution theorem.

Product Details :

Genre : Mathematics
Author : Matthew Baker
Publisher : American Mathematical Soc.
Release : 2010-03-10
File : 466 Pages
ISBN-13 : 9780821849248


Singularities Algebraic Geometry Commutative Algebra And Related Topics

eBook Download

BOOK EXCERPT:

This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.

Product Details :

Genre : Mathematics
Author : Gert-Martin Greuel
Publisher : Springer
Release : 2018-09-18
File : 604 Pages
ISBN-13 : 9783319968278


The Arithmetic Of Polynomial Dynamical Pairs

eBook Download

BOOK EXCERPT:

New mathematical research in arithmetic dynamics In The Arithmetic of Polynomial Dynamical Pairs, Charles Favre and Thomas Gauthier present new mathematical research in the field of arithmetic dynamics. Specifically, the authors study one-dimensional algebraic families of pairs given by a polynomial with a marked point. Combining tools from arithmetic geometry and holomorphic dynamics, they prove an “unlikely intersection” statement for such pairs, thereby demonstrating strong rigidity features for them. They further describe one-dimensional families in the moduli space of polynomials containing infinitely many postcritically finite parameters, proving the dynamical André-Oort conjecture for curves in this context, originally stated by Baker and DeMarco. This is a reader-friendly invitation to a new and exciting research area that brings together sophisticated tools from many branches of mathematics.

Product Details :

Genre : Mathematics
Author : Charles Favre
Publisher : Princeton University Press
Release : 2022-06-14
File : 252 Pages
ISBN-13 : 9780691235486


Non Archimedean Tame Topology And Stably Dominated Types Am 192

eBook Download

BOOK EXCERPT:

Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections.

Product Details :

Genre : Mathematics
Author : Ehud Hrushovski
Publisher : Princeton University Press
Release : 2016-02-09
File : 227 Pages
ISBN-13 : 9781400881222