Big Data Analytics With Spark

eBook Download

BOOK EXCERPT:

Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Product Details :

Genre : Computers
Author : Mohammed Guller
Publisher : Apress
Release : 2015-12-29
File : 290 Pages
ISBN-13 : 9781484209646


Large Scale Data Analytics With Python And Spark

eBook Download

BOOK EXCERPT:

A hands-on textbook for courses on large-scale data analytics and designing machine learning solutions.

Product Details :

Genre : Computers
Author : Isaac Triguero
Publisher : Cambridge University Press
Release : 2023-11-30
File : 395 Pages
ISBN-13 : 9781009318259


Spark For Data Science

eBook Download

BOOK EXCERPT:

Analyze your data and delve deep into the world of machine learning with the latest Spark version, 2.0 About This Book Perform data analysis and build predictive models on huge datasets that leverage Apache Spark Learn to integrate data science algorithms and techniques with the fast and scalable computing features of Spark to address big data challenges Work through practical examples on real-world problems with sample code snippets Who This Book Is For This book is for anyone who wants to leverage Apache Spark for data science and machine learning. If you are a technologist who wants to expand your knowledge to perform data science operations in Spark, or a data scientist who wants to understand how algorithms are implemented in Spark, or a newbie with minimal development experience who wants to learn about Big Data Analytics, this book is for you! What You Will Learn Consolidate, clean, and transform your data acquired from various data sources Perform statistical analysis of data to find hidden insights Explore graphical techniques to see what your data looks like Use machine learning techniques to build predictive models Build scalable data products and solutions Start programming using the RDD, DataFrame and Dataset APIs Become an expert by improving your data analytical skills In Detail This is the era of Big Data. The words ҂ig Data' implies big innovation and enables a competitive advantage for businesses. Apache Spark was designed to perform Big Data analytics at scale, and so Spark is equipped with the necessary algorithms and supports multiple programming languages. Whether you are a technologist, a data scientist, or a beginner to Big Data analytics, this book will provide you with all the skills necessary to perform statistical data analysis, data visualization, predictive modeling, and build scalable data products or solutions using Python, Scala, and R. With ample case studies and real-world examples, Spark for Data Science will help you ensure the successful execution of your data science projects. Style and approach This book takes a step-by-step approach to statistical analysis and machine learning, and is explained in a conversational and easy-to-follow style. Each topic is explained sequentially with a focus on the fundamentals as well as the advanced concepts of algorithms and techniques. Real-world examples with sample code snippets are also included.

Product Details :

Genre : Computers
Author : Srinivas Duvvuri
Publisher : Packt Publishing Ltd
Release : 2016-09-30
File : 339 Pages
ISBN-13 : 9781785884771


Big Data Analytics For Smart Urban Systems

eBook Download

BOOK EXCERPT:

Big Data Analytics for Smart Urban Systems aims to introduce Big data solutions for urban sustainability smart applications, particularly for smart urban systems. It focuses on intelligent big data which takes the benefits of machine learning to analyse large and rapidly changing datasets in smart urban systems. The state-of-the-art Big data analytics applications are presented and discussed to highlight the feasibility of big data and machine learning solutions to enhance smart urban systems, smart operations, urban management, and urban governance. The key benefits of this book are, (1) to introduce the principles of machine learning-enabled big data analysis in smart urban systems, (2) to present the state-of-the-art data analysis solutions in smart management and operations, and (3) to understand the principles of big data analytics for smart cities and communities. Endorsements ‘Over the many years of collaboration between academia and industry, we noticed the common language is ‘big data’; with that, we have developed novel ideas to bridge the gaps and help promote innovation, technologies, and science’.- Tian Tang, Independent Researcher, China ‘Big Data Analytics is a fascinating research area, particularly for cities and city transformations. This book is valuable to those who think vigorously and aim to act ahead’.- Li Xie, Independent Researcher, China ‘For urban critiques, knowledge trains aspiring opportunities toward outstanding manifestations. Smartness has evolved or/ advanced rambunctious & embracing realities along (with) novel directions and nurturing integrated city knowledge’.- Aaron Golden, SELECT Consultants, UK

Product Details :

Genre : Science
Author : Saeid Pourroostaei Ardakani
Publisher : Springer Nature
Release : 2023-10-29
File : 143 Pages
ISBN-13 : 9789819955435


Big Data Analytics With R

eBook Download

BOOK EXCERPT:

Utilize R to uncover hidden patterns in your Big Data About This Book Perform computational analyses on Big Data to generate meaningful results Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases, Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market Who This Book Is For This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows. It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R. What You Will Learn Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform In Detail Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O. Style and approach This book will serve as a practical guide to tackling Big Data problems using R programming language and its statistical environment. Each section of the book will present you with concise and easy-to-follow steps on how to process, transform and analyse large data sets.

Product Details :

Genre : Computers
Author : Simon Walkowiak
Publisher : Packt Publishing Ltd
Release : 2016-07-29
File : 498 Pages
ISBN-13 : 9781786463722


Real Time Big Data Analytics

eBook Download

BOOK EXCERPT:

Design, process, and analyze large sets of complex data in real time About This Book Get acquainted with transformations and database-level interactions, and ensure the reliability of messages processed using Storm Implement strategies to solve the challenges of real-time data processing Load datasets, build queries, and make recommendations using Spark SQL Who This Book Is For If you are a Big Data architect, developer, or a programmer who wants to develop applications/frameworks to implement real-time analytics using open source technologies, then this book is for you. What You Will Learn Explore big data technologies and frameworks Work through practical challenges and use cases of real-time analytics versus batch analytics Develop real-word use cases for processing and analyzing data in real-time using the programming paradigm of Apache Storm Handle and process real-time transactional data Optimize and tune Apache Storm for varied workloads and production deployments Process and stream data with Amazon Kinesis and Elastic MapReduce Perform interactive and exploratory data analytics using Spark SQL Develop common enterprise architectures/applications for real-time and batch analytics In Detail Enterprise has been striving hard to deal with the challenges of data arriving in real time or near real time. Although there are technologies such as Storm and Spark (and many more) that solve the challenges of real-time data, using the appropriate technology/framework for the right business use case is the key to success. This book provides you with the skills required to quickly design, implement and deploy your real-time analytics using real-world examples of big data use cases. From the beginning of the book, we will cover the basics of varied real-time data processing frameworks and technologies. We will discuss and explain the differences between batch and real-time processing in detail, and will also explore the techniques and programming concepts using Apache Storm. Moving on, we'll familiarize you with “Amazon Kinesis” for real-time data processing on cloud. We will further develop your understanding of real-time analytics through a comprehensive review of Apache Spark along with the high-level architecture and the building blocks of a Spark program. You will learn how to transform your data, get an output from transformations, and persist your results using Spark RDDs, using an interface called Spark SQL to work with Spark. At the end of this book, we will introduce Spark Streaming, the streaming library of Spark, and will walk you through the emerging Lambda Architecture (LA), which provides a hybrid platform for big data processing by combining real-time and precomputed batch data to provide a near real-time view of incoming data. Style and approach This step-by-step is an easy-to-follow, detailed tutorial, filled with practical examples of basic and advanced features. Each topic is explained sequentially and supported by real-world examples and executable code snippets.

Product Details :

Genre : Computers
Author : Sumit Gupta
Publisher : Packt Publishing Ltd
Release : 2016-02-26
File : 326 Pages
ISBN-13 : 9781784397401


Distributed Computing In Big Data Analytics

eBook Download

BOOK EXCERPT:

Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use. This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principles of distributed computing are used in those situations. Practitioners and researchers alike will find this book a valuable tool for their work, helping them to select the appropriate technologies, while understanding the inherent strengths and drawbacks of those technologies.

Product Details :

Genre : Computers
Author : Sourav Mazumder
Publisher : Springer
Release : 2017-08-29
File : 166 Pages
ISBN-13 : 9783319598345


Research Practitioner S Handbook On Big Data Analytics

eBook Download

BOOK EXCERPT:

This new volume addresses the growing interest in and use of big data analytics in many industries and in many research fields around the globe; it is a comprehensive resource on the core concepts of big data analytics and the tools, techniques, and methodologies. The book gives the why and the how of big data analytics in an organized and straightforward manner, using both theoretical and practical approaches. The book’s authors have organized the contents in a systematic manner, starting with an introduction and overview of big data analytics and then delving into pre-processing methods, feature selection methods and algorithms, big data streams, and big data classification. Such terms and methods as swarm intelligence, data mining, the bat algorithm and genetic algorithms, big data streams, and many more are discussed. The authors explain how deep learning and machine learning along with other methods and tools are applied in big data analytics. The last section of the book presents a selection of illustrative case studies that show examples of the use of data analytics in industries such as health care, business, education, and social media.

Product Details :

Genre : Computers
Author : S. Sasikala
Publisher : CRC Press
Release : 2023-05-04
File : 310 Pages
ISBN-13 : 9781000578362


Ultimate Big Data Analytics With Apache Hadoop

eBook Download

BOOK EXCERPT:

TAGLINE Master the Hadoop Ecosystem and Build Scalable Analytics Systems KEY FEATURES ● Explains Hadoop, YARN, MapReduce, and Tez for understanding distributed data processing and resource management. ● Delves into Apache Hive and Apache Spark for their roles in data warehousing, real-time processing, and advanced analytics. ● Provides hands-on guidance for using Python with Hadoop for business intelligence and data analytics. DESCRIPTION In a rapidly evolving Big Data job market projected to grow by 28% through 2026 and with salaries reaching up to $150,000 annually—mastering big data analytics with the Hadoop ecosystem is most sought after for career advancement. The Ultimate Big Data Analytics with Apache Hadoop is an indispensable companion offering in-depth knowledge and practical skills needed to excel in today's data-driven landscape. The book begins laying a strong foundation with an overview of data lakes, data warehouses, and related concepts. It then delves into core Hadoop components such as HDFS, YARN, MapReduce, and Apache Tez, offering a blend of theory and practical exercises. You will gain hands-on experience with query engines like Apache Hive and Apache Spark, as well as file and table formats such as ORC, Parquet, Avro, Iceberg, Hudi, and Delta. Detailed instructions on installing and configuring clusters with Docker are included, along with big data visualization and statistical analysis using Python. Given the growing importance of scalable data pipelines, this book equips data engineers, analysts, and big data professionals with practical skills to set up, manage, and optimize data pipelines, and to apply machine learning techniques effectively. Don’t miss out on the opportunity to become a leader in the big data field to unlock the full potential of big data analytics with Hadoop. WHAT WILL YOU LEARN ● Gain expertise in building and managing large-scale data pipelines with Hadoop, YARN, and MapReduce. ● Master real-time analytics and data processing with Apache Spark’s powerful features. ● Develop skills in using Apache Hive for efficient data warehousing and complex queries. ● Integrate Python for advanced data analysis, visualization, and business intelligence in the Hadoop ecosystem. ● Learn to enhance data storage and processing performance using formats like ORC, Parquet, and Delta. ● Acquire hands-on experience in deploying and managing Hadoop clusters with Docker and Kubernetes. ● Build and deploy machine learning models with tools integrated into the Hadoop ecosystem. WHO IS THIS BOOK FOR? This book is tailored for data engineers, analysts, software developers, data scientists, IT professionals, and engineering students seeking to enhance their skills in big data analytics with Hadoop. Prerequisites include a basic understanding of big data concepts, programming knowledge in Java, Python, or SQL, and basic Linux command line skills. No prior experience with Hadoop is required, but a foundational grasp of data principles and technical proficiency will help readers fully engage with the material. TABLE OF CONTENTS 1. Introduction to Hadoop and ASF 2. Overview of Big Data Analytics 3. Hadoop and YARN MapReduce and Tez 4. Distributed Query Engines: Apache Hive 5. Distributed Query Engines: Apache Spark 6. File Formats and Table Formats (Apache Ice-berg, Hudi, and Delta) 7. Python and the Hadoop Ecosystem for Big Data Analytics - BI 8. Data Science and Machine Learning with Hadoop Ecosystem 9. Introduction to Cloud Computing and Other Apache Projects Index

Product Details :

Genre : Computers
Author : Simhadri Govindappa
Publisher : Orange Education Pvt Ltd
Release : 2024-09-09
File : 367 Pages
ISBN-13 : 9788197396571


Big Data Analytics And Data Mining Of Prescribing Patterns Of Integrative Medicine Volume 1

eBook Download

BOOK EXCERPT:

The practice of Traditional Chinse Medicine (TCM) has been gaining a wider acceptance worldwide in recent decades. The global TCM market was estimated to be worth nearly US$60 billion in 2012 with the China market alone projected by Helmut Kaiser Consultancy to exceed US$121 billion in 2025. HerbMiners aims to make TCM healthcare smarter by unlocking the value of clinical data. Its research process includes the application of data mining to reveal relationships between symptoms, illnesses, herbs and prescriptions; and using artificial intelligence to learn about TCM diagnosis differentiation and prescriptions from TCM practitioners. It also provides TCM Advisor (TCMA), an integrated software solution that assists hospitals and clinics with TCM practice modernization and patient record digitalization. TCMA is currently used by a large number of private TCM clinics and more than 80% of non-governmental organizations in Hong Kong that provide TCM service, as well as sites in the United States, Canada, Australia, Singapore, Philippines and Macau. While the first generation TCMA system – developed in-house on the Microsoft Windows .Net framework with a data capture module running on the Windows Azure cloud platform – enabled HerbMiners to tap into clinical data streams, the hybrid application architecture was laborious to support on-site, limiting the company’s ability to take on more TCM clinics and diverting staff resources from its core research activities. HerbMiners Big data analytics is the use of advanced analytic techniques against very large, diverse Integrative medicine data sets that include different types such as structured/unstructured and streaming/batch/images/data mining, and different sizes from terabytes to zettabytes. Big data is a term applied to data sets whose size or type is beyond the ability of traditional relational databases to capture, manage, and process the data with low-latency. And it has one or more of the following characteristics – high volume, high velocity, or high variety. Big data comes from sensors, devices, video/audio, networks, log files, transactional applications, web, and social media - much of it generated in real time and in a very large scale. Analyzing big data allows analysts, researchers, and business users to make better and faster decisions using data that was previously inaccessible or unusable. Using advanced analytics techniques such as text analytics, machine learning, predictive analytics, data mining, statistics, and natural language processing, businesses can analyze previously untapped data sources independent or together with their existing enterprise data to gain new insights resulting in significantly better and faster decisions.

Product Details :

Genre : Computers
Author : Dr. Wilfred W.K. Lin
Publisher : Dr. Wilfred W.K. Lin
Release : 2020-09-30
File : 268 Pages
ISBN-13 :