C Programming Cookbook

eBook Download

BOOK EXCERPT:

Quick fixes to your common C# programming problems, with a focus on C# 6.0 About This Book Unique recipes for C#, that places it in its real-world context. You will be able to get yourself out of any coding-corner youve backed yourself into. All code samples available through GitHub to bring C#. In line with modern development workflows, written to the latest specification of C# 6.0. Who This Book Is For The book is aimed at developers who have basic familiarity with C# programming and will know the VS 2015 environment. What You Will Learn Write better and less code to achieve the same result as in previous versions of C#. Generate tests from the Code Contracts for mission critical methods. Integrate code in Visual Studio with GitHub. Create a web application in Azure. Design and build a microservice architecture Demystify the Rx library using Reactive extensions Write high performing codes in C# and understanding multi-threading. Security and Debugging. Implement Code Contracts on code in Visual Studio. In Detail During your application development workflow, there is always a moment when you need to get out of a tight spot. Through a recipe-based approach, this book will help you overcome common programming problems and get your applications ready to face the modern world. We start with C# 6, giving you hands-on experience with the new language features. Next, we work through the tasks that you perform on a daily basis such as working with strings, generics, and lots more. Gradually, we move on to more advanced topics such as the concept of object-oriented programming, asynchronous programming, reactive extensions, and code contracts. You will learn responsive high performance programming in C# and how to create applications with Azure. Next, we will review the choices available when choosing a source control solution. At the end of the book, we will show you how to create secure and robust code, and will help you ramp up your skills when using the new version of C# 6 and Visual Studio Style and Approach Unique recipe-based guide that will help you gain a solid understanding of the new concepts in C# 6 and Visual Studio Enterprise 2015 in a concise and technically correct manner.

Product Details :

Genre : Computers
Author : Dirk Strauss
Publisher : Packt Publishing Ltd
Release : 2016-07-27
File : 477 Pages
ISBN-13 : 9781786463968


Rust Programming Cookbook

eBook Download

BOOK EXCERPT:

Practical solutions to overcome challenges in creating console and web applications and working with systems-level and embedded code, network programming, deep neural networks, and much more. Key FeaturesWork through recipes featuring advanced concepts such as concurrency, unsafe code, and macros to migrate your codebase to the Rust programming language Learn how to run machine learning models with Rust Explore error handling, macros, and modularization to write maintainable codeBook Description Rust 2018, Rust's first major milestone since version 1.0, brings more advancement in the Rust language. The Rust Programming Cookbook is a practical guide to help you overcome challenges when writing Rust code. This Rust book covers recipes for configuring Rust for different environments and architectural designs, and provides solutions to practical problems. It will also take you through Rust's core concepts, enabling you to create efficient, high-performance applications that use features such as zero-cost abstractions and improved memory management. As you progress, you'll delve into more advanced topics, including channels and actors, for building scalable, production-grade applications, and even get to grips with error handling, macros, and modularization to write maintainable code. You will then learn how to overcome common roadblocks when using Rust for systems programming, IoT, web development, and network programming. Finally, you'll discover what Rust 2018 has to offer for embedded programmers. By the end of the book, you'll have learned how to build fast and safe applications and services using Rust. What you will learnUnderstand how Rust provides unique solutions to solve system programming language problemsGrasp the core concepts of Rust to develop fast and safe applicationsExplore the possibility of integrating Rust units into existing applications for improved efficiencyDiscover how to achieve better parallelism and security with RustWrite Python extensions in RustCompile external assembly files and use the Foreign Function Interface (FFI)Build web applications and services using Rust for high performanceWho this book is for The Rust cookbook is for software developers looking to enhance their knowledge of Rust and leverage its features using modern programming practices. Familiarity with Rust language is expected to get the most out of this book.

Product Details :

Genre : Computers
Author : Claus Matzinger
Publisher : Packt Publishing Ltd
Release : 2019-10-18
File : 434 Pages
ISBN-13 : 9781789531749


Full Source Code Sqlite For Students And Programmers With Python Gui

eBook Download

BOOK EXCERPT:

In this project, we provide you with a SQLITE version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. You can find the detailed structures of the database: https://www.oracletutorial.com/getting-started/oracle-sample-database/. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years.

Product Details :

Genre : Computers
Author : Vivian Siahaan
Publisher : BALIGE PUBLISHING
Release : 2022-07-26
File : 420 Pages
ISBN-13 :


Step By Step Database Programming With Jdbc And Postgresql

eBook Download

BOOK EXCERPT:

PostgreSQL was designed to run on UNIX-like platforms. However, PostgreSQL was then also designed to be portable so that it could run on various platforms such as Mac OS X, Solaris, and Windows. PostgreSQL is free and open source software. Its source code is available under PostgreSQL license, a liberal open source license. You are free to use, modify and distribute PostgreSQL in any form. PostgreSQL requires very minimum maintained efforts because of its stability. Therefore, if you develop applications based on PostgreSQL, the total cost of ownership is low in comparison with other database management systems. In Chapter 2, you will learn querying data from the postgresql using jdbc including establishing a database connection, creating a statement object, executing the query, processing the resultset object, querying data using a statement that returns multiple rows, querying data using a statement that has parameters, inserting data into a table using jdbc, updating data in postgresql database using jdbc, calling postgresql stored function using jdbc, deleting data from a postgresql table using jdbc, and postgresql jdbc transaction. In Chapter 3, you will learn managing table structure and views including postgresql data types, postgresql create table, postgresql select into statement, postgresql create table as, using postgresql serial to create auto-increment column, identity column, alter table, drop table, truncate table, check constraint, not-null constraint, foreign key, primary key, unique constraint, managing postgresql views, creating updatable views, materialized views, creating updatable views using the with check option clause, and recursive view. In Chapter 4, you will learn statements, operators, and clauses including select, order by, select distinct, limit, fetch, in, between, postgresql like, is null, alias, joins, inner join, postgresql left join, self-join, full outer join, cross join, natural join, group by, having, intersect operator, except operator, grouping sets, cube, and rollup. In Chapter 5, you will learn postgresql trigger, aggregate, and string functions including creating the first trigger in postgresql, managing postgresql trigger, aggregate functions, avg function, max function, min function, sum function, postgresql concat function, ascii function, trim function, length function, substring function, regexp_matches function, regexp_replace function, replace function, to_number function, and to_char function.

Product Details :

Genre : Computers
Author : Vivian Siahaan
Publisher : SPARTA Publishing
Release : 2019-04-08
File : 221 Pages
ISBN-13 :


A Practical Guide To Database Programming With Php Mysql

eBook Download

BOOK EXCERPT:

You will learn PHP/MySQL fast, easy and fun. This book provides you with a complete MySQL guidance presented in an easy-to-follow manner. Each chapter has practical examples with SQL script and screenshots available. If you go through the entire chapters, you will know how to manage MySQL databases and manipulate data using various techniques such as MySQL queries, MySQL stored procedures, database views, triggers. In the first part of the book, you will learn basic MySQL statements including how to implement querying data, sorting data, filtering data, joining tables, grouping data, subquerying data, dan setting operators. Aside from learning basic SQL statements, you will also learn step by step how to develop stored procedures in MySQL. First, we introduce you to the stored procedure concept and discuss when you should use it. Then, we show you how to use the basic elements of the procedure code such as create procedure statement, if-else, case, loop, stored procedure’s parameters. In the next chapter, we will discuss the database views, how they are implemented in MySQL, and how to use them more effectively. After that, you will learn how to work with the MySQL triggers. By definition, a trigger or database trigger is a stored program executed automatically to respond to a specific event e.g., insert, update or delete occurred in a table. The database trigger is powerful tool for protecting the integrity of the data in your MySQL databases. In addition, it is useful to automate some database operations such as logging, auditing, etc. Then, you will learn about MySQL index including creating indexes, removing indexes, listing all indexes of a table and other important features of indexes in MySQL. MySQL uses indexes to quickly find rows with specific column values. Without an index, MySQL must scan the whole table to locate the relevant rows. The larger table, the slower it searches. After that, you will find a lot of useful MySQL administration techniques including MySQL server startup and shutdown, MySQL server security, MySQL database maintenance, and backup. The last chapter gives you the most commonly used MySQL functions including aggregate functions, string functions, date time functions, control flow functions, etc.

Product Details :

Genre : Computers
Author : Vivian Siahaan
Publisher : SPARTA Publishing
Release : 2019-04-14
File : 436 Pages
ISBN-13 :


Mysql For Data Analysis And Visualization With Python Gui

eBook Download

BOOK EXCERPT:

In this project, you will use the Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over june 1997, amount feature over 1998, and all amount feature.

Product Details :

Genre : Computers
Author : Vivian Siahaan
Publisher : BALIGE PUBLISHING
Release : 2022-06-26
File : 335 Pages
ISBN-13 :


Python Gui Projects With Machine Learning And Deep Learning

eBook Download

BOOK EXCERPT:

PROJECT 1: THE APPLIED DATA SCIENCE WORKSHOP: Prostate Cancer Classification and Recognition Using Machine Learning and Deep Learning with Python GUI Prostate cancer is cancer that occurs in the prostate. The prostate is a small walnut-shaped gland in males that produces the seminal fluid that nourishes and transports sperm. Prostate cancer is one of the most common types of cancer. Many prostate cancers grow slowly and are confined to the prostate gland, where they may not cause serious harm. However, while some types of prostate cancer grow slowly and may need minimal or even no treatment, other types are aggressive and can spread quickly. The dataset used in this project consists of 100 patients which can be used to implement the machine learning and deep learning algorithms. The dataset consists of 100 observations and 10 variables (out of which 8 numeric variables and one categorical variable and is ID) which are as follows: Id, Radius, Texture, Perimeter, Area, Smoothness, Compactness, Diagnosis Result, Symmetry, and Fractal Dimension. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: THE APPLIED DATA SCIENCE WORKSHOP: Urinary Biomarkers Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI Pancreatic cancer is an extremely deadly type of cancer. Once diagnosed, the five-year survival rate is less than 10%. However, if pancreatic cancer is caught early, the odds of surviving are much better. Unfortunately, many cases of pancreatic cancer show no symptoms until the cancer has spread throughout the body. A diagnostic test to identify people with pancreatic cancer could be enormously helpful. In a paper by Silvana Debernardi and colleagues, published this year in the journal PLOS Medicine, a multi-national team of researchers sought to develop an accurate diagnostic test for the most common type of pancreatic cancer, called pancreatic ductal adenocarcinoma or PDAC. They gathered a series of biomarkers from the urine of three groups of patients: Healthy controls, Patients with non-cancerous pancreatic conditions, like chronic pancreatitis, and Patients with pancreatic ductal adenocarcinoma. When possible, these patients were age- and sex-matched. The goal was to develop an accurate way to identify patients with pancreatic cancer. The key features are four urinary biomarkers: creatinine, LYVE1, REG1B, and TFF1. Creatinine is a protein that is often used as an indicator of kidney function. YVLE1 is lymphatic vessel endothelial hyaluronan receptor 1, a protein that may play a role in tumor metastasis. REG1B is a protein that may be associated with pancreas regeneration. TFF1 is trefoil factor 1, which may be related to regeneration and repair of the urinary tract. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: DATA SCIENCE CRASH COURSE: Voice Based Gender Classification and Prediction Using Machine Learning and Deep Learning with Python GUI This dataset was created to identify a voice as male or female, based upon acoustic properties of the voice and speech. The dataset consists of 3,168 recorded voice samples, collected from male and female speakers. The voice samples are pre-processed by acoustic analysis in R using the seewave and tuneR packages, with an analyzed frequency range of 0hz-280hz (human vocal range). The following acoustic properties of each voice are measured and included within the CSV: meanfreq: mean frequency (in kHz); sd: standard deviation of frequency; median: median frequency (in kHz); Q25: first quantile (in kHz); Q75: third quantile (in kHz); IQR: interquantile range (in kHz); skew: skewness; kurt: kurtosis; sp.ent: spectral entropy; sfm: spectral flatness; mode: mode frequency; centroid: frequency centroid (see specprop); peakf: peak frequency (frequency with highest energy); meanfun: average of fundamental frequency measured across acoustic signal; minfun: minimum fundamental frequency measured across acoustic signal; maxfun: maximum fundamental frequency measured across acoustic signal; meandom: average of dominant frequency measured across acoustic signal; mindom: minimum of dominant frequency measured across acoustic signal; maxdom: maximum of dominant frequency measured across acoustic signal; dfrange: range of dominant frequency measured across acoustic signal; modindx: modulation index. Calculated as the accumulated absolute difference between adjacent measurements of fundamental frequencies divided by the frequency range; and label: male or female. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: DATA SCIENCE CRASH COURSE: Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Thyroid disease is a general term for a medical condition that keeps your thyroid from making the right amount of hormones. Thyroid typically makes hormones that keep body functioning normally. When the thyroid makes too much thyroid hormone, body uses energy too quickly. The two main types of thyroid disease are hypothyroidism and hyperthyroidism. Both conditions can be caused by other diseases that impact the way the thyroid gland works. Dataset used in this project was from Garavan Institute Documentation as given by Ross Quinlan 6 databases from the Garavan Institute in Sydney, Australia. Approximately the following for each database: 2800 training (data) instances and 972 test instances. This dataset contains plenty of missing data, while 29 or so attributes, either Boolean or continuously-valued. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Product Details :

Genre : Computers
Author : Vivian Siahaan
Publisher : BALIGE PUBLISHING
Release : 2022-01-16
File : 917 Pages
ISBN-13 :


Java In Practice Jdbc And Database Applications

eBook Download

BOOK EXCERPT:

This hands-on introduction to database programming using Java is ideal for people with little or no programming experience. The goal of this concise book is not just to teach you Java, but to help you think like a programmer. Each brief chapter covers the material for one week of a college course to help you practice what you've learned. As you would expect, this book shows how to build from scratch two different databases: MySQL and SQLite using Java. In designing a GUI and as an IDE, you will make use of the NetBeans tool. In the first chapter, you will learn: How to install NetBeans, JDK 11, and MySQL Connector/J; How to integrate external libraries into projects; How the basic MySQL commands are used; How to query statements to create databases, create tables, fill tables, and manipulate table contents is done. In the second chapter, you will study: Creating the initial three table projects in the school database: Teacher table, TClass table, and Subject table; Creating database configuration files; Creating a Java GUI for viewing and navigating the contents of each table; Creating a Java GUI for inserting and editing tables; and Creating a Java GUI to join and query the three tables. In the third chapter, you will learn: Creating the main form to connect all forms; Creating a project will add three more tables to the school database: the Student table, the Parent table, and Tuition table; Creating a Java GUI to view and navigate the contents of each table; Creating a Java GUI for editing, inserting, and deleting records in each table; Creating a Java GUI to join and query the three tables and all six. In chapter four, you will study how to query the six tables. In chapter five, you will be shown how to create SQLite database and tables with Java. In chapter six, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. Digital image techniques to extract image features used in this chapted are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In chapter seven, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In chapter eight, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table. In chapter nine, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In chapter ten, you will add two tables: Victim and Case_File. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File has seven columns: case_file_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables. Finally, this book is hopefully useful and can improve database programming skills for every Java/MySQL/SQLite pogrammer.

Product Details :

Genre : Computers
Author : Vivian Siahaan
Publisher : SPARTA PUBLISHING
Release : 2019-11-27
File : 539 Pages
ISBN-13 :


Python Gui With Sql Server For Absolute Beginners

eBook Download

BOOK EXCERPT:

This book is SQL Server-based python programming. Microsoft SQL Server is robust relational database management system used by so many organizations of various sizes including top fortune 100 companies. SQL Server is a relational database management system (RDBMS) developed and marketed by Microsoft. As a database server, the primary function of the SQL Server is to store and retrieve data used by other applications. Deliberately designed for various levels of programming skill, this book is suitable for students, engineers, and even researchers in various disciplines. There is no need for advanced programming experience, and school-level programming skills are needed. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In third chapter, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In fourth chapter, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In the last chapter, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables.

Product Details :

Genre : Computers
Author : Vivian Siahaan
Publisher : SPARTA PUBLISHING
Release : 2019-09-20
File : 373 Pages
ISBN-13 :


Building Three Java Gui Applications Using Mysql Mariadb And Postgresql

eBook Download

BOOK EXCERPT:

In this book, you will create three Java GUI applications using MySQL, MariaDB, and PostgreSQL. In this book, you will learn how to build from scratch a database management system using Java. In designing a GUI and as an IDE, you will make use of the NetBeans tool. Gradually and step by step, you will be taught how to utilize three different databases in Java. In chapter one, you will create School database and its six tables. In chapter two, you will study: Creating the initial three table projects in the school database: Teacher table, TClass table, and Subject table; Creating database configuration files; Creating a Java GUI for viewing and navigating the contents of each table; Creating a Java GUI for inserting and editing tables; and Creating a Java GUI to join and query the three tables. In chapter three, you will learn: Creating the main form to connect all forms; Creating a project will add three more tables to the school database: the Student table, the Parent table, and Tuition table; Creating a Java GUI to view and navigate the contents of each table; Creating a Java GUI for editing, inserting, and deleting records in each table; Creating a Java GUI to join and query the three tables and all six. In chapter four, you will study how to query the six tables. In chapter five, you will learn the basics of cryptography using Java. Here, you will learn how to write a Java program to count Hash, MAC (Message Authentication Code), store keys in a KeyStore, generate PrivateKey and PublicKey, encrypt / decrypt data, and generate and verify digital prints. In chapter six, you will create Bank database and its tables. In chapter seven, you will learn how to create and store salt passwords and verify them. You will create a Login table. In this case, you will see how to create a Java GUI using NetBeans to implement it. In addition to the Login table, in this chapter you will also create a Client table. In the case of the Client table, you will learn how to generate and save public and private keys into a database. You will also learn how to encrypt / decrypt data and save the results into a database. In chapter eight, you will create an Account table. This account table has the following ten fields: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In this case, you will learn how to implement generating and verifying digital prints and storing the results into a database. In chapter nine, you will create a Client_Data table, which has the following seven fields: client_data_id (primary key), account_id (primary_key), birth_date, address, mother_name, telephone, and photo_path. In chapter ten, you will be taught how to create Crime database and its tables. In chapter eleven, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In chapter twelve, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In chapter thirteen, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. In chapter fourteen, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In chapter fifteen, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables.

Product Details :

Genre : Computers
Author : Vivian Siahaan
Publisher : SPARTA PUBLISHING
Release : 2019-11-09
File : 535 Pages
ISBN-13 :