Contemporary Multivariate Analysis And Design Of Experiments

eBook Download

BOOK EXCERPT:

Index. Subject index -- Author index

Product Details :

Genre : Mathematics
Author : Kaitai Fang
Publisher : World Scientific
Release : 2005
File : 470 Pages
ISBN-13 : 9789812567765


Contemporary Experimental Design Multivariate Analysis And Data Mining

eBook Download

BOOK EXCERPT:

The collection and analysis of data play an important role in many fields of science and technology, such as computational biology, quantitative finance, information engineering, machine learning, neuroscience, medicine, and the social sciences. Especially in the era of big data, researchers can easily collect data characterised by massive dimensions and complexity. In celebration of Professor Kai-Tai Fang’s 80th birthday, we present this book, which furthers new and exciting developments in modern statistical theories, methods and applications. The book features four review papers on Professor Fang’s numerous contributions to the fields of experimental design, multivariate analysis, data mining and education. It also contains twenty research articles contributed by prominent and active figures in their fields. The articles cover a wide range of important topics such as experimental design, multivariate analysis, data mining, hypothesis testing and statistical models.

Product Details :

Genre : Mathematics
Author : Jianqing Fan
Publisher : Springer Nature
Release : 2020-05-22
File : 384 Pages
ISBN-13 : 9783030461614


Advances And Innovations In Statistics And Data Science

eBook Download

BOOK EXCERPT:

This book highlights selected papers from the 4th ICSA-Canada Chapter Symposium, as well as invited articles from established researchers in the areas of statistics and data science. It covers a variety of topics, including methodology development in data science, such as methodology in the analysis of high dimensional data, feature screening in ultra-high dimensional data and natural language ranking; statistical analysis challenges in sampling, multivariate survival models and contaminated data, as well as applications of statistical methods. With this book, readers can make use of frontier research methods to tackle their problems in research, education, training and consultation.

Product Details :

Genre : Science
Author : Wenqing He
Publisher : Springer Nature
Release : 2022-10-27
File : 339 Pages
ISBN-13 : 9783031083297


Modern Experimental Design

eBook Download

BOOK EXCERPT:

A complete and well-balanced introduction to modern experimental design Using current research and discussion of the topic along with clear applications, Modern Experimental Design highlights the guiding role of statistical principles in experimental design construction. This text can serve as both an applied introduction as well as a concise review of the essential types of experimental designs and their applications. Topical coverage includes designs containing one or multiple factors, designs with at least one blocking factor, split-unit designs and their variations as well as supersaturated and Plackett-Burman designs. In addition, the text contains extensive treatment of: Conditional effects analysis as a proposed general method of analysis Multiresponse optimization Space-filling designs, including Latin hypercube and uniform designs Restricted regions of operability and debarred observations Analysis of Means (ANOM) used to analyze data from various types of designs The application of available software, including Design-Expert, JMP, and MINITAB This text provides thorough coverage of the topic while also introducing the reader to new approaches. Using a large number of references with detailed analyses of datasets, Modern Experimental Design works as a well-rounded learning tool for beginners as well as a valuable resource for practitioners.

Product Details :

Genre : Mathematics
Author : Thomas P. Ryan
Publisher : John Wiley & Sons
Release : 2006-12-22
File : 620 Pages
ISBN-13 : 9780470074343


Contemporary Bayesian Econometrics And Statistics

eBook Download

BOOK EXCERPT:

Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.

Product Details :

Genre : Mathematics
Author : John Geweke
Publisher : John Wiley & Sons
Release : 2005-10-03
File : 322 Pages
ISBN-13 : 9780471744726


Notable Modern Indian Mathematicians And Statisticians

eBook Download

BOOK EXCERPT:

This book provides a comprehensive portrayal of the history of Indian mathematicians and statisticians and uncovers many missing parts of the scientific representation of mathematical and statistical research during the 19th and 20th centuries of Bengal (now West Bengal), India. This book gives a brief historical account about the establishment of the first-two departments in an Indian university, where graduate teaching and research were initiated. This was a unique distinction for the University of Calcutta which was established in 1857. The creation of the world famous Indian Statistical Institute (ISI) in Calcutta (now Kolkata) is also briefly described. The lives and works of the 16 pioneer mathematical scientists who adorned the above mentioned institutions and the first Indian Institute Technology (IIT) of India have been elaborated in lucid language. Some outstanding scholars who were trained at the ISI but left India permanently have also been discussed briefly in a separate chapter. This book fulfils a long-standing gap in the history of modern Indian mathematics, which will make the book very useful to researchers in the history of science and mathematics. Written in very lucid English with little mathematical or statistical jargon makes the book immensely readable even to general readers with interest in scientific history even from non-mathematical, non-statistical background. This book is a clear portrayal of the struggle and success of researchers in mathematical sciences in Bengal (an important part of the colonial India), unveils before the international community of mathematical scientists. The real connoisseurs will appreciate the value of the book, as it will clear up many prevailing misconceptions.

Product Details :

Genre : Mathematics
Author : Purabi Mukherji
Publisher : Springer Nature
Release : 2022-10-11
File : 235 Pages
ISBN-13 : 9789811961328


Handbook Of Cancer Models With Applications

eBook Download

BOOK EXCERPT:

Composed of contributions from an international team of leading researchers, this book pulls together the most recent research results in the field of cancer modeling to provide readers with the most advanced mathematical models of cancer and their applications.Topics included in the book cover oncogenetic trees, stochastic multistage models of carcinogenesis, effects of ionizing radiation on cell cycle and genomic instability, induction of DNA damage by ionizing radiation and its repair, epigenetic cancer models, bystander effects of radiation, multiple pathway models of human colon cancer, and stochastic models of metastasis. The book also provides some important applications of cancer models to the assessment of cancer risk associated with various hazardous environmental agents, to cancer screening by MRI, and to drug resistance in cancer chemotherapy. An updated statistical design and analysis of xenograft experiments as well as a statistical analysis of cancer occult clinical data are also provided.The book will serve as a useful source of reference for researchers in biomathematics, biostatistics and bioinformatics; for clinical investigators and medical doctors employing quantitative methods to develop procedures for cancer diagnosis, prevention, control and treatment; and for graduate students.

Product Details :

Genre : Science
Author : W. Y. Tan
Publisher : World Scientific
Release : 2008
File : 592 Pages
ISBN-13 : 9789812779472


Chemometrics And Cheminformatics In Aquatic Toxicology

eBook Download

BOOK EXCERPT:

CHEMOMETRICS AND CHEMINFORMATICS IN AQUATIC TOXICOLOGY Explore chemometric and cheminformatic techniques and tools in aquatic toxicology Chemometrics and Cheminformatics in Aquatic Toxicology delivers an exploration of the existing and emerging problems of contamination of the aquatic environment through various metal and organic pollutants, including industrial chemicals, pharmaceuticals, cosmetics, biocides, nanomaterials, pesticides, surfactants, dyes, and more. The book discusses different chemometric and cheminformatic tools for non-experts and their application to the analysis and modeling of toxicity data of chemicals to various aquatic organisms. You’ll learn about a variety of aquatic toxicity databases and chemometric software tools and webservers as well as practical examples of model development, including illustrations. You’ll also find case studies and literature reports to round out your understanding of the subject. Finally, you’ll learn about tools and protocols including machine learning, data mining, and QSAR and ligand-based chemical design methods. Readers will also benefit from the inclusion of: A thorough introduction to chemometric and cheminformatic tools and techniques, including machine learning and data mining An exploration of aquatic toxicity databases, chemometric software tools, and webservers Practical examples and case studies to highlight and illustrate the concepts contained within the book A concise treatment of chemometric and cheminformatic tools and their application to the analysis and modeling of toxicity data Perfect for researchers and students in chemistry and the environmental and pharmaceutical sciences, Chemometrics and Cheminformatics in Aquatic Toxicology will also earn a place in the libraries of professionals in the chemical industry and regulators whose work involves chemometrics.

Product Details :

Genre : Science
Author : Kunal Roy
Publisher : John Wiley & Sons
Release : 2022-01-06
File : 596 Pages
ISBN-13 : 9781119681595


Modern Applied U Statistics

eBook Download

BOOK EXCERPT:

A timely and applied approach to the newly discovered methods and applications of U-statistics Built on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utilizing a "learn by example" approach, this book provides an accessible, yet in-depth, treatment of U-statistics, as well as addresses key concepts in asymptotic theory by integrating translational and cross-disciplinary research. The authors begin with an introduction of the essential and theoretical foundations of U-statistics such as the notion of convergence in probability and distribution, basic convergence results, stochastic Os, inference theory, generalized estimating equations, as well as the definition and asymptotic properties of U-statistics. With an emphasis on nonparametric applications when and where applicable, the authors then build upon this established foundation in order to equip readers with the knowledge needed to understand the modern-day extensions of U-statistics that are explored in subsequent chapters. Additional topical coverage includes: Longitudinal data modeling with missing data Parametric and distribution-free mixed-effect and structural equation models A new multi-response based regression framework for non-parametric statistics such as the product moment correlation, Kendall's tau, and Mann-Whitney-Wilcoxon rank tests A new class of U-statistic-based estimating equations (UBEE) for dependent responses Motivating examples, in-depth illustrations of statistical and model-building concepts, and an extensive discussion of longitudinal study designs strengthen the real-world utility and comprehension of this book. An accompanying Web site features SAS? and S-Plus? program codes, software applications, and additional study data. Modern Applied U-Statistics accommodates second- and third-year students of biostatistics at the graduate level and also serves as an excellent self-study for practitioners in the fields of bioinformatics and psychosocial research.

Product Details :

Genre : Mathematics
Author : Jeanne Kowalski
Publisher : John Wiley & Sons
Release : 2008-01-28
File : 402 Pages
ISBN-13 : 9780470186459


Modern Statistics

eBook Download

BOOK EXCERPT:

This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others. The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning. Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses. The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/ "In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that." Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)

Product Details :

Genre : Computers
Author : Ron S. Kenett
Publisher : Springer Nature
Release : 2022-09-20
File : 453 Pages
ISBN-13 : 9783031075667