Core Chasing Algorithms For The Eigenvalue Problem

eBook Download

BOOK EXCERPT:

Eigenvalue computations are ubiquitous in science and engineering. John Francis?s implicitly shifted QR algorithm has been the method of choice for small to medium sized eigenvalue problems since its invention in 1959. This book presents a new view of this classical algorithm. While Francis?s original procedure chases bulges, the new version chases core transformations, which allows the development of fast algorithms for eigenvalue problems with a variety of special structures. This also leads to a fast and backward stable algorithm for computing the roots of a polynomial by solving the companion matrix eigenvalue problem. The authors received a SIAM Outstanding Paper prize for this work. This book will be of interest to researchers in numerical linear algebra and their students.

Product Details :

Genre : Science
Author : Jared L. Aurentz
Publisher : SIAM
Release : 2018-07-06
File : 155 Pages
ISBN-13 : 9781611975338


Core Chasing Algorithms For The Eigenvalue Problem

eBook Download

BOOK EXCERPT:

Eigenvalue computations are ubiquitous in science and engineering. John Francis?s implicitly shifted QR algorithm has been the method of choice for small to medium sized eigenvalue problems since its invention in 1959. This book presents a new view of this classical algorithm. While Francis?s original procedure chases bulges, the new version chases core transformations, which allows the development of fast algorithms for eigenvalue problems with a variety of special structures. This also leads to a fast and backward stable algorithm for computing the roots of a polynomial by solving the companion matrix eigenvalue problem. The authors received a SIAM Outstanding Paper prize for this work. This book will be of interest to researchers in numerical linear algebra and their students.

Product Details :

Genre : Science
Author : Jared L. Aurentz
Publisher : SIAM
Release : 2018-07-06
File : 155 Pages
ISBN-13 : 9781611975345


Riemann Problems And Jupyter Solutions

eBook Download

BOOK EXCERPT:

This book addresses an important class of mathematical problems (the Riemann problem) for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves. The only interactive book focused entirely on the Riemann problem, it develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working on wave propagation problems. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.

Product Details :

Genre : Mathematics
Author : David I. Ketcheson
Publisher : SIAM
Release : 2020-06-26
File : 179 Pages
ISBN-13 : 9781611976212


Structured Matrices In Numerical Linear Algebra

eBook Download

BOOK EXCERPT:

This book gathers selected contributions presented at the INdAM Meeting Structured Matrices in Numerical Linear Algebra: Analysis, Algorithms and Applications, held in Cortona, Italy on September 4-8, 2017. Highlights cutting-edge research on Structured Matrix Analysis, it covers theoretical issues, computational aspects, and applications alike. The contributions, written by authors from the foremost international groups in the community, trace the main research lines and treat the main problems of current interest in this field. The book offers a valuable resource for all scholars who are interested in this topic, including researchers, PhD students and post-docs.

Product Details :

Genre : Mathematics
Author : Dario Andrea Bini
Publisher : Springer
Release : 2019-04-08
File : 327 Pages
ISBN-13 : 9783030040888


Structure Preserving Doubling Algorithms For Nonlinear Matrix Equations

eBook Download

BOOK EXCERPT:

Nonlinear matrix equations arise frequently in applied science and engineering. This is the first book to provide a unified treatment of structure-preserving doubling algorithms that have been recently studied and proven effective for notoriously challenging problems, such as fluid queue theory and vibration analysis for high speed trains; present recent developments and results for the theory of doubling algorithms for nonlinear matrix equations associated with regular matrix pencils; and highlight the use of doubling algorithms in achieving robust solutions for notoriously challenging problems that other methods cannot. Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations is intended for researchers and computational scientists, and graduate students may also find it of interest.

Product Details :

Genre : Mathematics
Author : Tsung-Ming Huang
Publisher : SIAM
Release : 2018-10-04
File : 151 Pages
ISBN-13 : 9781611975352


Computed Tomography

eBook Download

BOOK EXCERPT:

This book describes fundamental computational methods for image reconstruction in computed tomography (CT) with a focus on a pedagogical presentation of these methods and their underlying concepts. Insights into the advantages, limitations, and theoretical and computational aspects of the methods are included, giving a balanced presentation that allows readers to understand and implement CT reconstruction algorithms. Unique in its emphasis on the interplay between modeling, computing, and algorithm development, Computed Tomography: Algorithms, Insight, and Just Enough Theory develops the mathematical and computational aspects of three main classes of reconstruction methods: classical filtered back-projection, algebraic iterative methods, and variational methods based on nonlinear numerical optimization algorithms. It spotlights the link between CT and numerical methods, which is rarely discussed in current literature, and describes the effects of incomplete data using both microlocal analysis and singular value decomposition (SVD). This book sets the stage for further exploration of CT algorithms. Readers will be able to grasp the underlying mathematical models to motivate and derive the basic principles of CT reconstruction and will gain basic understanding of fundamental computational challenges of CT, such as the influence of noisy and incomplete data, as well as the reconstruction capabilities and the convergence of the iterative algorithms. Exercises using MATLAB are included, allowing readers to experiment with the algorithms and making the book suitable for teaching and self-study. Computed Tomography: Algorithms, Insight, and Just Enough Theory is primarily aimed at students, researchers, and practitioners interested in the computational aspects of X-ray CT and is also relevant for anyone working with other forms of tomography, such as neutron and electron tomography, that share the same mathematical formulation. With its basis in lecture notes developed for a PhD course, it is appropriate as a textbook for courses on computational methods for X-ray CT and computational methods for inverse problems.

Product Details :

Genre : Mathematics
Author : Per Christian Hansen
Publisher : SIAM
Release : 2021-09-25
File : 355 Pages
ISBN-13 : 9781611976670


Solving Nonlinear Equations With Iterative Methods

eBook Download

BOOK EXCERPT:

This user-oriented guide describes state-of-the-art methods for nonlinear equations and shows, via algorithms in pseudocode and Julia with several examples, how to choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author’s Solving Nonlinear Equations with Newton’s Methods (SIAM, 2003), this book contains new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. It is supported by a Julia package and a suite of Jupyter notebooks and includes examples of nonlinear problems from many disciplines. This book is will be useful to researchers who solve nonlinear equations, students in numerical analysis, and the Julia community.

Product Details :

Genre : Mathematics
Author : C. T. Kelley
Publisher : SIAM
Release :
File : 201 Pages
ISBN-13 : 9781611977271


Iterative Methods And Preconditioners For Systems Of Linear Equations

eBook Download

BOOK EXCERPT:

Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.

Product Details :

Genre : Mathematics
Author : Gabriele Ciaramella
Publisher : SIAM
Release : 2022-02-08
File : 285 Pages
ISBN-13 : 9781611976908


Location Estimation From The Ground Up

eBook Download

BOOK EXCERPT:

The location of an object can often be determined from indirect measurements using a process called estimation. This book explains the mathematical formulation of location-estimation problems and the statistical properties of these mathematical models. It also presents algorithms that are used to resolve these models to obtain location estimates, including the simplest linear models, nonlinear models (location estimation using satellite navigation systems and estimation of the signal arrival time from those satellites), dynamical systems (estimation of an entire path taken by a vehicle), and models with integer ambiguities (GPS location estimation that is centimeter-level accurate). Location Estimation from the Ground Up clearly presents analytic and algorithmic topics not covered in other books, including simple algorithms for Kalman filtering and smoothing, the solution of separable nonlinear optimization problems, estimation with integer ambiguities, and the implicit-function approach to estimating covariance matrices when the estimator is a minimizer or maximizer. It takes a unified approach to estimation while highlighting the differences between classes of estimation problems. The only book on estimation written for math and computer science students and graduates, it includes problems at the end of each chapter, many with solutions, to help readers deepen their understanding of the material and guide them through small programming projects that apply theory and algorithms to the solution of real-world location-estimation problems. The book’s core audience consists of engineers, including software engineers and algorithm developers, and graduate students who work on location-estimation projects and who need help translating the theory into algorithms, code, and deep understanding of the problem in front of them. Instructors in mathematics, computer science, and engineering may also find the book of interest as a primary or supplementary text for courses in location estimation and navigation.

Product Details :

Genre : Technology & Engineering
Author : Sivan Toledo
Publisher : SIAM
Release : 2020-09-17
File : 217 Pages
ISBN-13 : 9781611976298


Matrix Methods In Data Mining And Pattern Recognition Second Edition

eBook Download

BOOK EXCERPT:

This thoroughly revised second edition provides an updated treatment of numerical linear algebra techniques for solving problems in data mining and pattern recognition. Adopting an application-oriented approach, the author introduces matrix theory and decompositions, describes how modern matrix methods can be applied in real life scenarios, and provides a set of tools that students can modify for a particular application. Building on material from the first edition, the author discusses basic graph concepts and their matrix counterparts. He introduces the graph Laplacian and properties of its eigenvectors needed in spectral partitioning and describes spectral graph partitioning applied to social networks and text classification. Examples are included to help readers visualize the results. This new edition also presents matrix-based methods that underlie many of the algorithms used for big data. The book provides a solid foundation to further explore related topics and presents applications such as classification of handwritten digits, text mining, text summarization, PageRank computations related to the Google search engine, and facial recognition. Exercises and computer assignments are available on a Web page that supplements the book. This book is primarily for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course and graduate students in data mining and pattern recognition areas who need an introduction to linear algebra techniques.

Product Details :

Genre : Mathematics
Author : Lars Elden
Publisher : SIAM
Release : 2019-08-30
File : 244 Pages
ISBN-13 : 9781611975864