Data Science Theory And Applications

eBook Download

BOOK EXCERPT:

Data Science: Theory and Applications, Volume 44 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of interesting topics, including Modeling extreme climatic events using the generalized extreme value distribution, Bayesian Methods in Data Science, Mathematical Modeling in Health Economic Evaluations, Data Science in Cancer Genomics, Blockchain Technology: Theory and Practice, Statistical outline of animal home ranges, an application of set estimation, Application of Data Handling Techniques to Predict Pavement Performance, Analysis of individual treatment effects for enhanced inferences in medicine, and more. Additional sections cover Nonparametric Data Science: Testing Hypotheses in Large Complex Data, From Urban Mobility Problems to Data Science Solutions, and Data Structures and Artificial Intelligence Methods. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Data Science: Theory and Applications

Product Details :

Genre : Mathematics
Author :
Publisher : Elsevier
Release : 2021-02-12
File : 350 Pages
ISBN-13 : 9780323852012


Data Science Concepts And Techniques With Applications

eBook Download

BOOK EXCERPT:

This book comprehensively covers the topic of data science. Data science is an umbrella term that encompasses data analytics, data mining, machine learning, and several other related disciplines. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three sections: The first section is an introduction to data science. Starting from the basic concepts, the book will highlight the types of data, its use, its importance and issues that are normally faced in data analytics. Followed by discussion on wide range of applications of data science and widely used techniques in data science. The second section is devoted to the tools and techniques of data science. It consists of data pre-processing, feature selection, classification and clustering concepts as well as an introduction to text mining and opining mining. And finally, the third section of the book focuses on two programming languages commonly used for data science projects i.e. Python and R programming language. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. The book is suitable for both undergraduate and postgraduate students as well as those carrying out research in data science. It can be used as a textbook for undergraduate students in computer science, engineering and mathematics. It can also be accessible to undergraduate students from other areas with the adequate background. The more advanced chapters can be used by postgraduate researchers intending to gather a deeper theoretical understanding.

Product Details :

Genre : Computers
Author : Usman Qamar
Publisher : Springer Nature
Release : 2020-06-08
File : 207 Pages
ISBN-13 : 9789811561337


Encyclopedia Of Data Science And Machine Learning

eBook Download

BOOK EXCERPT:

Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.

Product Details :

Genre : Computers
Author : Wang, John
Publisher : IGI Global
Release : 2023-01-20
File : 3296 Pages
ISBN-13 : 9781799892212


Data Science

eBook Download

BOOK EXCERPT:

The aim of this book is to provide an internationally respected collection of scientific research methods, technologies and applications in the area of data science. This book can prove useful to the researchers, professors, research students and practitioners as it reports novel research work on challenging topics in the area surrounding data science. In this book, some of the chapters are written in tutorial style concerning machine learning algorithms, data analysis, information design, infographics, relevant applications, etc. The book is structured as follows: • Part I: Data Science: Theory, Concepts, and Algorithms This part comprises five chapters on data Science theory, concepts, techniques and algorithms. • Part II: Data Design and Analysis This part comprises five chapters on data design and analysis. • Part III: Applications and New Trends in Data Science This part comprises four chapters on applications and new trends in data science.

Product Details :

Genre : Computers
Author : Qurban A Memon
Publisher : CRC Press
Release : 2019-09-26
File : 398 Pages
ISBN-13 : 9780429558825


Introduction To Data Science

eBook Download

BOOK EXCERPT:

Unlike the first edition, the new edition has been split into two books. Thoroughly revised and updated, this is the first book of the second edition of Introduction to Data Science: Data Wrangling and Visualization with R. It introduces skills that can help you tackle real-world data analysis challenges. These include R programming, data wrangling with dplyr, data visualization with ggplot2, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation with Quarto and knitr. The new edition includes additional material/chapters on data.table, locales, and accessing data through APIs. The book is divided into four parts: R, Data Visualization, Data Wrangling, and Productivity Tools. Each part has several chapters meant to be presented as one lecture and includes dozens of exercises. The second book will cover topics including probability, statistics and prediction algorithms with R. Throughout the book, we use motivating case studies. In each case study, we try to realistically mimic a data scientist’s experience. For each of the skills covered, we start by asking specific questions and answer these through data analysis. Examples of the case studies included in the book are: US murder rates by state, self-reported student heights, trends in world health and economics, and the impact of vaccines on infectious disease rates. This book is meant to be a textbook for a first course in Data Science. No previous knowledge of R is necessary, although some experience with programming may be helpful. To be a successful data analyst implementing these skills covered in this book requires understanding advanced statistical concepts, such as those covered the second book. If you read and understand all the chapters and complete all the exercises in this book, and understand statistical concepts, you will be well-positioned to perform basic data analysis tasks and you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Product Details :

Genre : Mathematics
Author : Rafael A. Irizarry
Publisher : CRC Press
Release : 2024-08-02
File : 346 Pages
ISBN-13 : 9781040105504


Data Science

eBook Download

BOOK EXCERPT:

Data Science: A First Introduction with Python focuses on using the Python programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. It emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. Based on educational research and active learning principles, the book uses a modern approach to Python and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The text will leave readers well-prepared for data science projects. It is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates at the University of British Columbia. Key Features: Includes autograded worksheets for interactive, self-directed learning. Introduces readers to modern data analysis and workflow tools such as Jupyter notebooks and GitHub, and covers cutting-edge data analysis and manipulation Python libraries such as pandas, scikit-learn, and altair. Is designed for a broad audience of learners from all backgrounds and disciplines.

Product Details :

Genre : Mathematics
Author : Tiffany Timbers
Publisher : CRC Press
Release : 2024-08-23
File : 452 Pages
ISBN-13 : 9781040106662


Data Science From Scratch

eBook Download

BOOK EXCERPT:

★☆If you are looking to start a new career that is in high demand, then you need to continue reading!★☆​​​​​​​ Data scientists are changing the way big data is used in different institutions. Big data is everywhere, but without the right person to interpret it, it means nothing. So where do business find these people to help change their business? You could be that person! It has become a universal truth that businesses are full of data. With the use of big data, the US healthcare could reduce their health-care spending by $300 billion to $450 billion. It can easily be seen that the value of big data lies in the analysis and processing of that data, and that's where data science comes in. ★★ Grab your copy today and learn ★★ ♦ In depth information about what data science is and why it is important. ♦ The prerequisites you will need to get started in data science. ♦ What it means to be a data scientist. ♦ The roles that hacking and coding play in data science. ♦ The different coding languages that can be used in data science. ♦ Why python is so important. ♦ How to use linear algebra and statistics. ♦ The different applications for data science. ♦ How to work with the data through munging and cleaning ♦ And much more... The use of data science adds a lot of value to businesses, and we will continue to see the need for data scientists grow. As businesses and the internet change, so will data science. This means it's important to be flexible. When data science can reduce spending costs by billions of dollars in the healthcare industry, why wait to jump in? If you want to get started in a new, ever growing, career, don't wait any longer. Scroll up and click the buy now button to get this book today!

Product Details :

Genre : Computers
Author : Steven Cooper
Publisher : Roland Bind
Release : 2018-08-10
File : 156 Pages
ISBN-13 : PKEY:6610000095711


Financial Data Analytics

eBook Download

BOOK EXCERPT:

​This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.

Product Details :

Genre : Business & Economics
Author : Sinem Derindere Köseoğlu
Publisher : Springer Nature
Release : 2022-04-25
File : 393 Pages
ISBN-13 : 9783030837990


Data Science And Innovations For Intelligent Systems

eBook Download

BOOK EXCERPT:

Data science is an emerging field and innovations in it need to be explored for the success of society 5.0. This book not only focuses on the practical applications of data science to achieve computational excellence, but also digs deep into the issues and implications of intelligent systems. This book highlights innovations in data science to achieve computational excellence that can optimize performance of smart applications. The book focuses on methodologies, framework, design issues, tools, architectures, and technologies necessary to develop and understand data science and its emerging applications in the present era. Data Science and Innovations for Intelligent Systems: Computational Excellence and Society 5.0 is useful for the research community, start-up entrepreneurs, academicians, data-centered industries, and professeurs who are interested in exploring innovations in varied applications and the areas of data science.

Product Details :

Genre : Computers
Author : Kavita Taneja
Publisher : CRC Press
Release : 2021-09-30
File : 385 Pages
ISBN-13 : 9781000456158


The Data Science Framework

eBook Download

BOOK EXCERPT:

This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines.

Product Details :

Genre : Computers
Author : Juan J. Cuadrado-Gallego
Publisher : Springer Nature
Release : 2020-10-01
File : 202 Pages
ISBN-13 : 9783030510237