eBook Download
BOOK EXCERPT:
Product Details :
Genre | : |
Author | : Deep Ray |
Publisher | : Springer Nature |
Release | : |
File | : 160 Pages |
ISBN-13 | : 9783031593451 |
Download PDF Ebooks Easily, FREE and Latest
WELCOME TO THE LIBRARY!!!
What are you looking for Book "Deep Learning And Computational Physics" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
Genre | : |
Author | : Deep Ray |
Publisher | : Springer Nature |
Release | : |
File | : 160 Pages |
ISBN-13 | : 9783031593451 |
Quantum information and contemporary smart network domains are so large and complex as to be beyond the reach of current research approaches. Hence, new theories are needed for their understanding and control. Physics is implicated as smart networks are physical systems comprised of particle-many items interacting and reaching criticality and emergence across volumes of macroscopic and microscopic states. Methods are integrated from statistical physics, information theory, and computer science. Statistical neural field theory and the AdS/CFT correspondence are employed to derive a smart network field theory (SNFT) and a smart network quantum field theory (SNQFT) for the orchestration of smart network systems. Specifically, a smart network field theory (conventional or quantum) is a field theory for the organization of particle-many systems from a characterization, control, criticality, and novelty emergence perspective.This book provides insight as to how quantum information science as a paradigm shift in computing may influence other high-impact digital transformation technologies, such as blockchain and machine learning. Smart networks refer to the idea that the internet is no longer simply a communications network, but rather a computing platform. The trajectory is that of communications networks becoming computing networks (with self-executing code), and perhaps ultimately quantum computing networks. Smart network technologies are conceived as autonomous self-operating computing networks. This includes blockchain economies, deep learning neural networks, autonomous supply chains, self-piloting driving fleets, unmanned aerial vehicles, industrial robotics cloudminds, real-time bidding for advertising, high-frequency trading networks, smart city IoT sensors, and the quantum internet.
Genre | : Science |
Author | : Melanie Swan |
Publisher | : World Scientific |
Release | : 2020-03-20 |
File | : 400 Pages |
ISBN-13 | : 9781786348227 |
This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems. Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced. As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.
Genre | : Computers |
Author | : Yinpeng Wang |
Publisher | : CRC Press |
Release | : 2023-07-06 |
File | : 200 Pages |
ISBN-13 | : 9781000896657 |
This book highlights a broad range of modern information technology tools, techniques, investigations and open challenges, mainly with applications in systems research and computational physics. Divided into three major sections, it begins by presenting specialized calculation methods in the framework of data analysis and intelligent computing. In turn, the second section focuses on application aspects, mainly for systems research, while the final section investigates how various tasks in the basic disciplines—mathematics and physics—can be tackled with the aid of contemporary IT methods. The book gathers selected presentations from the 3rd Conference on Information Technology, Systems Research and Computational Physics (ITSRCP'18), which took place on 2–5 July 2018 in Krakow, Poland. The intended readership includes interdisciplinary scientists and practitioners pursuing research at the interfaces of information technology, systems research, and computational physics.
Genre | : Technology & Engineering |
Author | : Piotr Kulczycki |
Publisher | : Springer |
Release | : 2019-04-17 |
File | : 391 Pages |
ISBN-13 | : 9783030180584 |
Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML
Genre | : Business & Economics |
Author | : Anuj Karpatne |
Publisher | : CRC Press |
Release | : 2022-08-15 |
File | : 442 Pages |
ISBN-13 | : 9781000598100 |
Computational Physics The classic in the field for more than 25 years, now with increased emphasis on data science and new chapters on quantum computing, machine learning (AI), and general relativity Computational physics combines physics, applied mathematics, and computer science in a cutting-edge multidisciplinary approach to solving realistic physical problems. It has become integral to modern physics research because of its capacity to bridge the gap between mathematical theory and real-world system behavior. Computational Physics provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. Its philosophy is rooted in “learning by doing”, assisted by many sample programs in the popular Python programming language. The first third of the book lays the fundamentals of scientific computing, including programming basics, stable algorithms for differentiation and integration, and matrix computing. The latter two-thirds of the textbook cover more advanced topics such linear and nonlinear differential equations, chaos and fractals, Fourier analysis, nonlinear dynamics, and finite difference and finite elements methods. A particular focus in on the applications of these methods for solving realistic physical problems. Readers of the fourth edition of Computational Physics will also find: An exceptionally broad range of topics, from simple matrix manipulations to intricate computations in nonlinear dynamics A whole suite of supplementary material: Python programs, Jupyter notebooks and videos Computational Physics is ideal for students in physics, engineering, materials science, and any subjects drawing on applied physics.
Genre | : Science |
Author | : Rubin H. Landau |
Publisher | : John Wiley & Sons |
Release | : 2024-03-20 |
File | : 597 Pages |
ISBN-13 | : 9783527843312 |
Numerical Analysis Meets Machine Learning series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on the Numerical Analysis Meets Machine Learning
Genre | : Mathematics |
Author | : |
Publisher | : Elsevier |
Release | : 2024-06-13 |
File | : 590 Pages |
ISBN-13 | : 9780443239854 |
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.
Genre | : Computers |
Author | : K. Gal |
Publisher | : IOS Press |
Release | : 2023-10-18 |
File | : 3328 Pages |
ISBN-13 | : 9781643684376 |
Peer-reviewed extended papers selected from the 25th International Conference on Material Forming (ESAFORM 2022) Peer-reviewed extended papers selected from the 25th International Conference on Material Forming (ESAFORM 2022), April 27-29, 2022, Portugal
Genre | : Computers |
Author | : Gabriela Vincze |
Publisher | : Trans Tech Publications Ltd |
Release | : 2022-07-22 |
File | : 2429 Pages |
ISBN-13 | : 9783035737509 |
The main objective of this book is to introduce a student who is familiar with elementary math concepts to select topics in deep learning. It exploits strong connections between deep learning algorithms and the techniques of computational physics to achieve two important goals. First, it uses concepts from computational physics to develop an understanding of deep learning algorithms. Second, it describes several novel deep learning algorithms for solving challenging problems in computational physics, thereby offering someone who is interested in modeling physical phenomena with a complementary set of tools. It is intended for senior undergraduate and graduate students in science and engineering programs. It is used as a textbook for a course (or a course sequence) for senior-level undergraduate or graduate-level students.
Genre | : Computers |
Author | : Deep Ray |
Publisher | : Springer |
Release | : 2024-07-01 |
File | : 0 Pages |
ISBN-13 | : 3031593448 |