Design Modeling And Control Of Aerial Robots For Physical Interaction And Manipulation

eBook Download

BOOK EXCERPT:

Aerial robots, meaning robots with flying capabilities, are essentially robotic platforms, which are autonomously controlled via some sophisticated control engineering tools. Similar to aerial vehichles, they can overcome the gravitational forces thanks to their design and/or actuation type. What makes them different from the conventional aerial vehicles, is the level of their autonomy. Reducing the complexity for piloting of such robots/vehicles provide the human operator more freedom and comfort. With their increasing autonomy, they can perform many complicated tasks by their own (such as surveillance, monitoring, or inspection), leaving the human operator the most high-level decisions to be made, if necessary. In this way they can be operated in hazardous and challenging environments, which might posses high risks to the human health. Thanks to their wide range of usage, the ongoing researches on aerial robots is expected to have an increasing impact on the human life. Aerial Physical Interaction (APhI) is a case, in which the aerial robot exerts meaningful forces and torques (wrench) to its environment while preserving its stable flight. In this case, the robot does not try avoiding every obstacle in its environment, but prepare itself for embracing the effect of a physical interaction, furthermore turn this interaction into some meaningful robotic tasks. Aerial manipulation can be considered as a subset of APhI, where the flying robot is designed and controlled in purpose of manipulating its environment. A clear motivation of using aerial robots for physical interaction, is to benefit their great workspace and agility. Moreover, developing robots that can perform not only APhI but also aerial manipulation can bring the great workspace of the flying robots together with the vast dexterity of the manipulating arms. This thesis work is addressing the design, modeling and control problem of these aerial robots for the purpose of physical interaction and manipulation. Using the nonlinear mathematical models of the robots at hand, in this thesis several different control methods (IDA-PBC, Exact Linearization, Differential Flatness Based Control) for APhI and aerial manipulation tasks have been developed and proposed. Furthermore, novel design tools (e.g. new rigid/elastic manipulating arms, hardware, software) to be used together with miniature aerial robots are presented within this thesis, which contributes to the robotics society not only in terms of concrete theory but also practical implementation and experimental robotics.

Product Details :

Genre : Technology & Engineering
Author : Burak Yüksel
Publisher : Logos Verlag Berlin GmbH
Release : 2017-06-10
File : 222 Pages
ISBN-13 : 9783832544928


Omnidirectional Tilt Rotor Flying Robots For Aerial Physical Interaction

eBook Download

BOOK EXCERPT:

This book deals with the study of tilt-rotor omnidirectional aerial robots and their application to aerial physical interaction tasks. Omnidirectional aerial robots possess decoupled translational and rotational dynamics, which are important for stable and sustained aerial interaction. The additional ability to dynamically re-orient thrust vectors opens the door to a wide array of possible morphologies and system capabilities. Through modeling, control, prototype design, and experimental evaluation, this book presents a comprehensive methodology and examples for the development of a novel tilt-rotor aerial manipulator. This work serves as a guide for envisioning and constructing innovative systems that will advance the frontier of aerial manipulation.

Product Details :

Genre : Technology & Engineering
Author : Karen Bodie
Publisher : Springer Nature
Release : 2024-01-21
File : 230 Pages
ISBN-13 : 9783031454974


Theory And Applications For Control Of Aerial Robots In Physical Interaction Through Tethers

eBook Download

BOOK EXCERPT:

This book studies how autonomous aerial robots physically interact with the surrounding environment. Intended to promote the advancement of aerial physical interaction, it analyzes a particular class of aerial robots: tethered aerial vehicles. By examining specific systems, while still considering the challenges of the general problem, it will help readers acquire the knowledge and expertise needed for the subsequent development of more general methods applicable to aerial physical interaction. The formal analysis covers topics ranging from control, state estimation, and motion planning, to experimental validation. Addressing both theoretical and technical aspects, the book is intended for a broad academic and industrial readership, including undergraduate students, researchers and engineers. It can be used as a teaching reference, or as the basis for product development.

Product Details :

Genre : Technology & Engineering
Author : Marco Tognon
Publisher : Springer Nature
Release : 2020-06-26
File : 172 Pages
ISBN-13 : 9783030486594


Aerial Robotic Manipulation

eBook Download

BOOK EXCERPT:

Aerial robotic manipulation integrates concepts and technologies coming from unmanned aerial systems and robotics manipulation. It includes not only kinematic, dynamics, aerodynamics and control but also perception, planning, design aspects, mechatronics and cooperation between several aerial robotics manipulators. All these topics are considered in this book in which the main research and development approaches in aerial robotic manipulation are presented, including the description of relevant systems. In addition of the research aspects, the book also includes the deployment of real systems both indoors and outdoors, which is a relevant characteristic of the book because most results of aerial robotic manipulation have been validated only indoor using motion tracking systems. Moreover, the book presents two relevant applications: structure assembly and inspection and maintenance, which has started to be applied in the industry. The Chapters of the book will present results of two main European Robotics Projects in aerial robotics manipulation: FP7 ARCAS and H2020 AEROARMS. FP7 ARCAS defined the basic concepts on aerial robotic manipulation, including cooperative manipulation. The H2020 AEROARMS on aerial robot with multiple arms and advanced manipulation capabilities for inspection and maintenance has two general objectives: (1) development of advanced aerial robotic manipulation methods and technologies, including manipulation with dual arms and multi-directional thrusters aerial platforms; and (2) application to the inspection and maintenance.

Product Details :

Genre : Technology & Engineering
Author : Anibal Ollero
Publisher : Springer
Release : 2019-06-27
File : 385 Pages
ISBN-13 : 9783030129453


Measuring Modelling And Minimizing Perceived Motion Incongruence For Vehicle Motion Simulation

eBook Download

BOOK EXCERPT:

Humans always wanted to go faster and higher than their own legs could carry them. This led them to invent numerous types of vehicles to move fast over land, water and air. As training how to handle such vehicles and testing new developments can be dangerous and costly, vehicle motion simulators were invented. Motion-based simulators in particular, combine visual and physical motion cues to provide occupants with a feeling of being in the real vehicle. While visual cues are generally not limited in amplitude, physical cues certainly are, due to the limited simulator motion space. A motion cueing algorithm (MCA) is used to map the vehicle motions onto the simulator motion space. This mapping inherently creates mismatches between the visual and physical motion cues. Due to imperfections in the human perceptual system, not all visual/physical cueing mismatches are perceived. However, if a mismatch is perceived, it can impair the simulation realism and even cause simulator sickness. For MCA design, a good understanding of when mismatches are perceived, and ways to prevent these from occurring, are therefore essential. In this thesis a data-driven approach, using continuous subjective measures of the time-varying Perceived Motion Incongruence (PMI), is adopted. PMI in this case refers to the effect that perceived mismatches between visual and physical motion cues have on the resulting simulator realism. The main goal of this thesis was to develop an MCA-independent off-line prediction method for time-varying PMI during vehicle motion simulation, with the aim of improving motion cueing quality. To this end, a complete roadmap, describing how to measure and model PMI and how to apply such models to predict and minimize PMI in motion simulations is presented. Results from several human-in-the-loop experiments are used to demonstrate the potential of this novel approach.

Product Details :

Genre : Computers
Author : Diane Cleij
Publisher : Logos Verlag Berlin GmbH
Release : 2020-01-28
File : 294 Pages
ISBN-13 : 9783832550448


Aerial Robotic Workers

eBook Download

BOOK EXCERPT:

Aerial Robotic Workers: Design, Modeling, Control, Vision and Their Applications provides an in-depth look at both theory and practical applications surrounding the Aerial Robotic Worker (ARW). Emerging ARWs are fully autonomous flying robots that can assist human operations through their agile performance of aerial inspections and interaction with the surrounding infrastructure. This book addresses all the fundamental components of ARWs, starting with the hardware and software components and then addressing aspects of modeling, control, perception of the environment, and the concept of aerial manipulators, cooperative ARWs, and direct applications. The book includes sample codes and ROS-based tutorials, enabling the direct application of the chapters and real-life examples with platforms already existing in the market. - Addresses the fundamental problems of UAVs with the ability of utilizing aerial tools in the fields of modeling, control, navigation, cooperation, vision and interaction with the environment - Includes open source codes and libraries, providing a complete set of information for readers to start their experimentation with UAVs, and more specifically, ARWs - Provides multiple, real-life examples and codes in MATLAB and ROS

Product Details :

Genre : Technology & Engineering
Author : George Nikolakopoulos
Publisher : Butterworth-Heinemann
Release : 2022-11-05
File : 282 Pages
ISBN-13 : 9780128149102


Experimental Robotics

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Marcelo H. Ang Jr
Publisher : Springer Nature
Release :
File : 626 Pages
ISBN-13 : 9783031635960


Robotics Research

eBook Download

BOOK EXCERPT:

ISRR, the "International Symposium on Robotics Research", is one of robotics pioneering Symposia, which has established over the past two decades some of the field's most fundamental and lasting contributions. This book presents the results of the eighteenth edition of "Robotics Research" ISRR17, offering a collection of a broad range of topics in robotics. This symposium took place in Puerto Varas, Chile from December 11th to December 14th, 2017. The content of the contributions provides a wide coverage of the current state of robotics research, the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope and define the state of the art of robotics and its future direction.

Product Details :

Genre : Technology & Engineering
Author : Nancy M. Amato
Publisher : Springer Nature
Release : 2019-11-28
File : 1058 Pages
ISBN-13 : 9783030286194


Swarm Intelligence

eBook Download

BOOK EXCERPT:

This book constitutes the proceedings of the 11th International Conference on Swarm Intelligence, ANTS 2018, held in Rome, Italy, in October 2018. The 24 full papers and 12 short papers presented in this volume were carefully reviewed and selected from 69 submissions. They are devoted to the field of swarm intelligence as a whole, without any bias towards specific research directions.

Product Details :

Genre : Computers
Author : Marco Dorigo
Publisher : Springer
Release : 2018-10-22
File : 447 Pages
ISBN-13 : 9783030005337


Model Based Control Of Flying Robots For Robust Interaction Under Wind Influence

eBook Download

BOOK EXCERPT:

This book addresses the topic of autonomous flying robots physically interacting with the environment under the influence of wind. It aims to make aerial robots aware of the disturbance, interaction, and faults acting on them. This requires reasoning about the external wrench (force and torque) acting on the robot and distinguishing between wind, interactions, and collisions. The book takes a model-based approach and covers a systematic approach to parameter identification for flying robots. The book aims to provide a wind speed estimate independent of the external wrench, including estimating the wind speed using motor power measurements. Aerodynamics modeling is approached in a data-driven fashion, using ground-truth measurements from a 4D wind tunnel. Finally, the book bridges the gap between trajectory tracking and interaction control, to allow physical interaction under wind influence. Theoretical results are accompanied by extensive simulation and experimental results.

Product Details :

Genre : Technology & Engineering
Author : Teodor Tomić
Publisher : Springer Nature
Release : 2022-10-07
File : 168 Pages
ISBN-13 : 9783031153938