Differential Dynamical Systems Revised Edition

eBook Download

BOOK EXCERPT:

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.? Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple?, Mathematica?, and MATLAB? software to give students practice with computation applied to dynamical systems problems.

Product Details :

Genre : Mathematics
Author : James D. Meiss
Publisher : SIAM
Release : 2017-01-24
File : 392 Pages
ISBN-13 : 9781611974645


Boolean Systems

eBook Download

BOOK EXCERPT:

The Boolean functions may be iterated either asynchronously, when their coordinates are computed independently of each other, or synchronously, when their coordinates are computed at the same time. In Boolean Systems: Topics in Asynchronicity, a book addressed to mathematicians and computer scientists interested in Boolean systems and their use in modelling, author Serban E. Vlad presents a consistent and original mathematical theory of the discrete-time Boolean asynchronous systems. The purpose of the book is to set forth the concepts of such a theory, resulting from the synchronous Boolean system theory and mostly from the synchronous real system theory, by analogy, and to indicate the way in which known synchronous deterministic concepts generate new asynchronous nondeterministic concepts. The reader will be introduced to the dependence on the initial conditions, periodicity, path-connectedness, topological transitivity, and chaos. A property of major importance is invariance, which is present in five versions. In relation to it, the reader will study the maximal invariant subsets, the minimal invariant supersets, the minimal invariant subsets, connectedness, separation, the basins of attraction, and attractors. The stability of the systems and their time-reversal symmetry end the topics that refer to the systems without input. The rest of the book is concerned with input systems. The most consistent chapters of this part of the book refer to the fundamental operating mode and to the combinational systems (systems without feedback). The chapter Wires, Gates, and Flip-Flops presents a variety of applications. The first appendix addresses the issue of continuous time, and the second one sketches the important theory of Daizhan Cheng, which is put in relation to asynchronicity. The third appendix is a bridge between asynchronicity and the symbolic dynamics of Douglas Lind and Brian Marcus. - Presents a consistent and original theory of the discrete-time Boolean asynchronous systems, which are useful for mathematicians and computer scientists interested in Boolean Networks, dynamical systems, and modeling. - Studies the flows and equations of evolution, nullclines, dependence on initial conditions, periodicity, path-connectedness, topological transitivity, chaos, nonwandering points, invariance, connectedness, and separation, as well as the basins of attraction, attractors, stability, and time-reversal symmetry. - Explains the fundamental operating mode of the input systems and the combinational systems (systems without feedback). - Includes a chapter of applications of the Boolean systems and their modeling techniques. - Makes use of the unbounded delay model of computation of the Boolean functions.

Product Details :

Genre : Mathematics
Author : Serban E. Vlad
Publisher : Elsevier
Release : 2023-01-06
File : 458 Pages
ISBN-13 : 9780323955690


Control Systems

eBook Download

BOOK EXCERPT:

Control Systems: Classical, Modern, and AI-Based Approaches provides a broad and comprehensive study of the principles, mathematics, and applications for those studying basic control in mechanical, electrical, aerospace, and other engineering disciplines. The text builds a strong mathematical foundation of control theory of linear, nonlinear, optimal, model predictive, robust, digital, and adaptive control systems, and it addresses applications in several emerging areas, such as aircraft, electro-mechanical, and some nonengineering systems: DC motor control, steel beam thickness control, drum boiler, motional control system, chemical reactor, head-disk assembly, pitch control of an aircraft, yaw-damper control, helicopter control, and tidal power control. Decentralized control, game-theoretic control, and control of hybrid systems are discussed. Also, control systems based on artificial neural networks, fuzzy logic, and genetic algorithms, termed as AI-based systems are studied and analyzed with applications such as auto-landing aircraft, industrial process control, active suspension system, fuzzy gain scheduling, PID control, and adaptive neuro control. Numerical coverage with MATLAB® is integrated, and numerous examples and exercises are included for each chapter. Associated MATLAB® code will be made available.

Product Details :

Genre : Technology & Engineering
Author : Jitendra R. Raol
Publisher : CRC Press
Release : 2019-07-12
File : 634 Pages
ISBN-13 : 9781351170796


Attractors For Infinite Dimensional Non Autonomous Dynamical Systems

eBook Download

BOOK EXCERPT:

The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.

Product Details :

Genre : Mathematics
Author : Alexandre Carvalho
Publisher : Springer Science & Business Media
Release : 2012-09-25
File : 434 Pages
ISBN-13 : 9781461445814


Applied Analysis Of Ordinary Differential Equations

eBook Download

BOOK EXCERPT:

One might say that ordinary differential equations (notably, in Isaac Newton’s analysis of the motion of celestial bodies) had a central role in the development of modern applied mathematics. This book is devoted to research articles which build upon this spirit: combining analysis with the applications of ordinary differential equations (ODEs). ODEs arise across a spectrum of applications in physics, engineering, geophysics, biology, chemistry, economics, etc., because the rules governing the time-variation of relevant fields is often naturally expressed in terms of relationships between rates of change. ODEs also emerge in stochastic models—for example, when considering the evolution of a probability density function—and in large networks of interconnected agents. The increasing ease of numerically simulating large systems of ODEs has resulted in a plethora of publications in this area; nevertheless, the difficulty of parametrizing models means that the computational results by themselves are sometimes questionable. Therefore, analysis cannot be ignored. This book comprises articles that possess both interesting applications and the mathematical analysis driven by such applications.

Product Details :

Genre : Science
Author : Sanjeeva Balasuriya
Publisher : MDPI
Release : 2019-11-14
File : 62 Pages
ISBN-13 : 9783039217267


Pde Dynamics

eBook Download

BOOK EXCERPT:

This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.

Product Details :

Genre : Mathematics
Author : Christian Kuehn
Publisher : SIAM
Release : 2019-04-10
File : 260 Pages
ISBN-13 : 9781611975666


The Stability Of Dynamical Systems

eBook Download

BOOK EXCERPT:

An introduction to aspects of the theory of dynamical systems based on extensions of Liapunov's direct method. The main ideas and structure for the theory are presented for difference equations and for the analogous theory for ordinary differential equations and retarded functional differential equations.

Product Details :

Genre : Mathematics
Author : J. P. LaSalle
Publisher : SIAM
Release : 1976-01-01
File : 81 Pages
ISBN-13 : 9780898710229


Dynamical Systems And Evolution Equations

eBook Download

BOOK EXCERPT:

This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.

Product Details :

Genre : Computers
Author : John A. Walker
Publisher : Springer Science & Business Media
Release : 2013-03-09
File : 244 Pages
ISBN-13 : 9781468410365


Nonlinear Dynamics And Chaos

eBook Download

BOOK EXCERPT:

The goal of this third edition of Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering is the same as previous editions: to provide a good foundation - and a joyful experience - for anyone who’d like to learn about nonlinear dynamics and chaos from an applied perspective. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors. The prerequisites are comfort with multivariable calculus and linear algebra, as well as a first course in physics. Ideas from probability, complex analysis, and Fourier analysis are invoked, but they're either worked out from scratch or can be safely skipped (or accepted on faith). Changes to this edition include substantial exercises about conceptual models of climate change, an updated treatment of the SIR model of epidemics, and amendments (based on recent research) about the Selkov model of oscillatory glycolysis. Equations, diagrams, and every word has been reconsidered and often revised. There are also about 50 new references, many of them from the recent literature. The most notable change is a new chapter. Chapter 13 is about the Kuramoto model. The Kuramoto model is an icon of nonlinear dynamics. Introduced in 1975 by the Japanese physicist Yoshiki Kuramoto, his elegant model is one of the rare examples of a high-dimensional nonlinear system that can be solved by elementary means. Students and teachers have embraced the book in the past, its general approach and framework continue to be sound.

Product Details :

Genre : Mathematics
Author : Steven H Strogatz
Publisher : CRC Press
Release : 2024-01-16
File : 616 Pages
ISBN-13 : 9780429676284


An Introduction To Undergraduate Research In Computational And Mathematical Biology

eBook Download

BOOK EXCERPT:

Speaking directly to the growing importance of research experience in undergraduate mathematics programs, this volume offers suggestions for undergraduate-appropriate research projects in mathematical and computational biology for students and their faculty mentors. The aim of each chapter is twofold: for faculty, to alleviate the challenges of identifying accessible topics and advising students through the research process; for students, to provide sufficient background, additional references, and context to excite students in these areas and to enable them to successfully undertake these problems in their research. Some of the topics discussed include: • Oscillatory behaviors present in real-world applications, from seasonal outbreaks of childhood diseases to action potentials in neurons • Simulating bacterial growth, competition, and resistance with agent-based models and laboratory experiments • Network structure and the dynamics of biological systems • Using neural networks to identify bird species from birdsong samples • Modeling fluid flow induced by the motion of pulmonary cilia Aimed at undergraduate mathematics faculty and advanced undergraduate students, this unique guide will be a valuable resource for generating fruitful research collaborations between students and faculty.

Product Details :

Genre : Mathematics
Author : Hannah Callender Highlander
Publisher : Springer Nature
Release : 2020-02-17
File : 479 Pages
ISBN-13 : 9783030336455