eBook Download
BOOK EXCERPT:
Product Details :
Genre | : |
Author | : Larry Pace |
Publisher | : Lulu.com |
Release | : 2010 |
File | : 112 Pages |
ISBN-13 | : 9781435775602 |
Download PDF Ebooks Easily, FREE and Latest
WELCOME TO THE LIBRARY!!!
What are you looking for Book "Doing Basic Statistics With R" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
Genre | : |
Author | : Larry Pace |
Publisher | : Lulu.com |
Release | : 2010 |
File | : 112 Pages |
ISBN-13 | : 9781435775602 |
Basic Statistics with R: Reaching Decisions with Data provides an understanding of the processes at work in using data for results. Sections cover data collection and discuss exploratory analyses, including visual graphs, numerical summaries, and relationships between variables - basic probability, and statistical inference - including hypothesis testing and confidence intervals. All topics are taught using real-data drawn from various fields, including economics, biology, political science and sports. Using this wide variety of motivating examples allows students to directly connect and make statistics essential to their field of interest, rather than seeing it as a separate and ancillary knowledge area. In addition to introducing students to statistical topics using real data, the book provides a gentle introduction to coding, having the students use the statistical language and software R. Students learn to load data, calculate summary statistics, create graphs and do statistical inference using R with either Windows or Macintosh machines. - Features real-data to give students an engaging practice to connect with their areas of interest - Evolves from basic problems that can be worked by hand to the elementary use of opensource R software - Offers a direct, clear approach highlighted by useful visuals and examples
Genre | : Mathematics |
Author | : Stephen C. Loftus |
Publisher | : Academic Press |
Release | : 2021-02-20 |
File | : 306 Pages |
ISBN-13 | : 9780128209264 |
This book uses the statistical language R, which is the choice of ecologists worldwide and is rapidly becoming the 'go-to' stats program throughout the life-sciences. Furthermore, by using a single, real-world dataset throughout the book, readers are encouraged to become deeply familiar with an imperfect but realistic set of data. - -
Genre | : Computers |
Author | : Justin C. Touchon |
Publisher | : Oxford University Press |
Release | : 2021 |
File | : 334 Pages |
ISBN-13 | : 9780198869979 |
A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.
Genre | : Mathematics |
Author | : Nick Fieller |
Publisher | : CRC Press |
Release | : 2018-09-03 |
File | : 208 Pages |
ISBN-13 | : 9781315360058 |
Ideal for introductory statistics courses at both the undergraduate and graduate levels, Basic Statistics for the Behavioral and Social Sciences Using R is specifically designed to make adoption simple in a variety of disciplines. The text includes topics typically covered in introductory textbooks: probability, descriptive statistics, visualization, comparisons of means, tests of association, correlations, OLS regression, and power analysis. However, it also transcends other books at this level by covering topics such as bootstrapping and an introduction to R, for those who are novices to this powerful tool. In a straightforward and easy-to-understand format, the authors provide readers with a plethora of freely available and robust resources and examples that are applicable to a wide variety of behavioral and social science disciplines, including social work, psychology, and physical and occupational therapy. The book is a must-read for all professors and students endeavoring to learn basic statistics.
Genre | : Social Science |
Author | : Wendy Zeitlin |
Publisher | : Oxford University Press |
Release | : 2019-02-25 |
File | : 289 Pages |
ISBN-13 | : 9780190620196 |
Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.
Genre | : Social Science |
Author | : Rand R. Wilcox |
Publisher | : John Wiley & Sons |
Release | : 2016-05-10 |
File | : 502 Pages |
ISBN-13 | : 9781119061403 |
Understanding and Applying Basic Statistical Methods Using R remarkably conquers any hindrance between propels in the measurable writing and methods routinely utilized by non-analysts. Giving a theoretical premise to understanding the relative benefits and uses of these methods, the book highlights current bits of knowledge and advances applicable to fundamental systems regarding managing non-ordinariness, exceptions, heteroscedasticity (unequal changes), and curvature. Including a manual for R, the book utilizes R programming to investigate starting factual ideas and standard methods for managing known issues related with exemplary procedures. Altogether classroom tried, the book incorporates segments that attention on either R programming or computational points of interest to enable the reader to wind up noticeably familiar with fundamental ideas and standards basic regarding understanding and applying the numerous methods as of now accessible.
Genre | : |
Author | : Morgan Holland & |
Publisher | : Scientific e-Resources |
Release | : 2019-07-04 |
File | : 303 Pages |
ISBN-13 | : 9781839473371 |
This book introduces MDS as a psychological model and as a data analysis technique for the applied researcher. It also discusses, in detail, how to use two MDS programs, Proxscal (a module of SPSS) and Smacof (an R-package). The book is unique in its orientation on the applied researcher, whose primary interest is in using MDS as a tool to build substantive theories. This is done by emphasizing practical issues (such as evaluating model fit), by presenting ways to enforce theoretical expectations on the MDS solution, and by discussing typical mistakes that MDS users tend to make. The primary audience of this book are psychologists, social scientists, and market researchers. No particular background knowledge is required, beyond a basic knowledge of statistics.
Genre | : Computers |
Author | : Ingwer Borg |
Publisher | : Springer Science & Business Media |
Release | : 2012-10-30 |
File | : 119 Pages |
ISBN-13 | : 9783642318481 |
Now in its second edition, this book brings multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source shareware program R, Dr. Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays; linear algebra; univariate, bivariate and multivariate normal distributions; factor methods; linear regression; discrimination and classification; clustering; time series models; and additional methods. He uses practical examples from diverse disciplines, to welcome readers from a variety of academic specialties. Each chapter includes exercises, real data sets, and R implementations. The book avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary. New to this edition are chapters devoted to longitudinal studies and the clustering of large data. It is an excellent resource for students of multivariate statistics, as well as practitioners in the health and life sciences who are looking to integrate statistics into their work.
Genre | : Medical |
Author | : Daniel Zelterman |
Publisher | : Springer Nature |
Release | : 2023-01-20 |
File | : 469 Pages |
ISBN-13 | : 9783031130052 |
Presents modern methods to analyzing data with multiple applications in a variety of scientific fields Written at a readily accessible level, Basic Data Analysis for Time Series with R emphasizes the mathematical importance of collaborative analysis of data used to collect increments of time or space. Balancing a theoretical and practical approach to analyzing data within the context of serial correlation, the book presents a coherent and systematic regression-based approach to model selection. The book illustrates these principles of model selection and model building through the use of information criteria, cross validation, hypothesis tests, and confidence intervals. Focusing on frequency- and time-domain and trigonometric regression as the primary themes, the book also includes modern topical coverage on Fourier series and Akaike's Information Criterion (AIC). In addition, Basic Data Analysis for Time Series with R also features: Real-world examples to provide readers with practical hands-on experience Multiple R software subroutines employed with graphical displays Numerous exercise sets intended to support readers understanding of the core concepts Specific chapters devoted to the analysis of the Wolf sunspot number data and the Vostok ice core data sets
Genre | : Mathematics |
Author | : DeWayne R. Derryberry |
Publisher | : John Wiley & Sons |
Release | : 2014-06-23 |
File | : 347 Pages |
ISBN-13 | : 9781118593363 |