Eisenstein Series And Automorphic L Functions

eBook Download

BOOK EXCERPT:

This book presents a treatment of the theory of $L$-functions developed by means of the theory of Eisenstein series and their Fourier coefficients, a theory which is usually referred to as the Langlands-Shahidi method. The information gathered from this method, when combined with the converse theorems of Cogdell and Piatetski-Shapiro, has been quite sufficient in establishing a number of new cases of Langlands functoriality conjecture; at present, some of these cases cannot be obtained by any other method. These results have led to far-reaching new estimates for Hecke eigenvalues of Maass forms, as well as definitive solutions to certain problems in analytic and algebraic number theory. This book gives a detailed treatment of important parts of this theory, including a rather complete proof of Casselman-Shalika's formula for unramified Whittaker functions as well as a general treatment of the theory of intertwining operators. It also covers in some detail the global aspects of the method as well as some of its applications to group representations and harmonic analysis. This book is addressed to graduate students and researchers who are interested in the Langlands program in automorphic forms and its connections with number theory.

Product Details :

Genre : Mathematics
Author : Freydoon Shahidi
Publisher : American Mathematical Soc.
Release : 2010
File : 218 Pages
ISBN-13 : 9780821849897


Lectures On Automorphic L Functions

eBook Download

BOOK EXCERPT:

James W. Cogdell, Lectures on $L$-functions, converse theorems, and functoriality for $GL_n$: Preface Modular forms and their $L$-functions Automorphic forms Automorphic representations Fourier expansions and multiplicity one theorems Eulerian integral representations Local $L$-functions: The non-Archimedean case The unramified calculation Local $L$-functions: The Archimedean case Global $L$-functions Converse theorems Functoriality Functoriality for the classical groups Functoriality for the classical groups, II Henry H. Kim, Automorphic $L$-functions: Introduction Chevalley groups and their properties Cuspidal representations $L$-groups and automorphic $L$-functions Induced representations Eisenstein series and constant terms $L$-functions in the constant terms Meromorphic continuation of $L$-functions Generic representations and their Whittaker models Local coefficients and non-constant terms Local Langlands correspondence Local $L$-functions and functional equations Normalization of intertwining operators Holomorphy and bounded in vertical strips Langlands functoriality conjecture Converse theorem of Cogdell and Piatetski-Shapiro Functoriality of the symmetric cube Functoriality of the symmetric fourth Bibliography M. Ram Murty, Applications of symmetric power $L$-functions: Preface The Sato-Tate conjecture Maass wave forms The Rankin-Selberg method Oscillations of Fourier coefficients of cusp forms Poincare series Kloosterman sums and Selberg's conjecture Refined estimates for Fourier coefficients of cusp forms Twisting and averaging of $L$-series The Kim-Sarnak theorem Introduction to Artin $L$-functions Zeros and poles of Artin $L$-functions The Langlands-Tunnell theorem Bibliography

Product Details :

Genre : Mathematics
Author : James W. Cogdell
Publisher : American Mathematical Soc.
Release :
File : 300 Pages
ISBN-13 : 082187179X


Eisenstein Series And Automorphic Representations

eBook Download

BOOK EXCERPT:

Detailed exposition of automorphic representations and their relation to string theory, for mathematicians and theoretical physicists.

Product Details :

Genre : Mathematics
Author : Philipp Fleig
Publisher : Cambridge Studies in Advanced
Release : 2018-07-05
File : 587 Pages
ISBN-13 : 9781107189928


Eisenstein Series And Applications

eBook Download

BOOK EXCERPT:

Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas which do not usually interact with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The central theme of the exposition focuses on the common structural properties of Eisenstein series occurring in many related applications.

Product Details :

Genre : Mathematics
Author : Wee Teck Gan
Publisher : Springer Science & Business Media
Release : 2007-12-22
File : 317 Pages
ISBN-13 : 9780817646394


Eisenstein Series And Rationality Of Automorphic L Functions On Anisotropic Unitary Groups Over Function Fields

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Lu Zheng
Publisher :
Release : 1993
File : 224 Pages
ISBN-13 : MINN:31951D01031335T


Cohomology Of Arithmetic Groups

eBook Download

BOOK EXCERPT:

This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.

Product Details :

Genre : Mathematics
Author : James W. Cogdell
Publisher : Springer
Release : 2018-08-18
File : 310 Pages
ISBN-13 : 9783319955490


Automorphic Forms Beyond Mathrm Gl 2

eBook Download

BOOK EXCERPT:

The Langlands program has been a very active and central field in mathematics ever since its conception over 50 years ago. It connects number theory, representation theory and arithmetic geometry, and other fields in a profound way. There are nevertheless very few expository accounts beyond the GL(2) case. This book features expository accounts of several topics on automorphic forms on higher rank groups, including rationality questions on unitary group, theta lifts and their applications to Arthur's conjectures, quaternionic modular forms, and automorphic forms over functions fields and their applications to inverse Galois problems. It is based on the lecture notes prepared for the twenty-fifth Arizona Winter School on “Automorphic Forms beyond GL(2)”, held March 5–9, 2022, at the University of Arizona in Tucson. The speakers were Ellen Eischen, Wee Teck Gan, Aaron Pollack, and Zhiwei Yun. The exposition of the book is in a style accessible to students entering the field. Advanced graduate students as well as researchers will find this a valuable introduction to various important and very active research areas.

Product Details :

Genre : Mathematics
Author : Ellen Elizabeth Eischen
Publisher : American Mathematical Society
Release : 2024-03-26
File : 199 Pages
ISBN-13 : 9781470474928


Relative Trace Formulas

eBook Download

BOOK EXCERPT:

A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur’s trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.

Product Details :

Genre : Mathematics
Author : Werner Müller
Publisher : Springer Nature
Release : 2021-05-18
File : 438 Pages
ISBN-13 : 9783030685065


Multiple Dirichlet Series L Functions And Automorphic Forms

eBook Download

BOOK EXCERPT:

Multiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics. As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together. The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics. This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura.

Product Details :

Genre : Mathematics
Author : Daniel Bump
Publisher : Springer
Release : 2012-07-09
File : 367 Pages
ISBN-13 : 9780817683344


Automorphic Representations L Functions And Applications Progress And Prospects

eBook Download

BOOK EXCERPT:

This volume is the proceedings of the conference on Automorphic Representations, L-functions and Applications: Progress and Prospects, held at the Department of Mathematics of The Ohio State University, March 27–30, 2003, in honor of the 60th birthday of Steve Rallis. The theory of automorphic representations, automorphic L-functions and their applications to arithmetic continues to be an area of vigorous and fruitful research. The contributed papers in this volume represent many of the most recent developments and directions, including Rankin–Selberg L-functions (Bump, Ginzburg–Jiang–Rallis, Lapid–Rallis) the relative trace formula (Jacquet, Mao–Rallis) automorphic representations (Gan–Gurevich, Ginzburg–Rallis–Soudry) representation theory of p-adic groups (Baruch, Kudla–Rallis, Mœglin, Cogdell–Piatetski-Shapiro–Shahidi) p-adic methods (Harris–Li–Skinner, Vigneras), and arithmetic applications (Chinta–Friedberg–Hoffstein). The survey articles by Bump, on the Rankin–Selberg method, and by Jacquet, on the relative trace formula, should be particularly useful as an introduction to the key ideas about these important topics. This volume should be of interest both to researchers and students in the area of automorphic representations, as well as to mathematicians in other areas interested in having an overview of current developments in this important field.

Product Details :

Genre : Mathematics
Author : James W. Cogdell
Publisher : Walter de Gruyter
Release : 2011-06-24
File : 441 Pages
ISBN-13 : 9783110892703