Elementary Theory Of L Functions And Eisenstein Series

eBook Download

BOOK EXCERPT:

The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics in the USA, Japan, and in France, and in this book provides the reader with an elementary but detailed insight into the theory of L-functions. The presentation is self contained and concise, and the subject is approached using only basic tools from complex analysis and cohomology theory. Graduate students wishing to know more about L-functions will find that this book offers a unique introduction to this fascinating branch of mathematics.

Product Details :

Genre : Mathematics
Author : Haruzo Hida
Publisher : Cambridge University Press
Release : 1993-02-11
File : 404 Pages
ISBN-13 : 0521435692


Non Archimedean L Functions And Arithmetical Siegel Modular Forms

eBook Download

BOOK EXCERPT:

This book, now in its 2nd edition, is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth. The given construction of these p-adic L-functions uses precise algebraic properties of the arithmetical Shimura differential operator. The book will be very useful for postgraduate students and for non-experts looking for a quick approach to a rapidly developing domain of algebraic number theory. This new edition is substantially revised to account for the new explanations that have emerged in the past 10 years of the main formulas for special L-values in terms of arithmetical theory of nearly holomorphic modular forms.

Product Details :

Genre : Mathematics
Author : Michel Courtieu
Publisher : Springer
Release : 2003-12-09
File : 202 Pages
ISBN-13 : 9783540451785


Elliptic Curves Modular Forms And Iwasawa Theory

eBook Download

BOOK EXCERPT:

Celebrating one of the leading figures in contemporary number theory – John H. Coates – on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.

Product Details :

Genre : Mathematics
Author : David Loeffler
Publisher : Springer
Release : 2017-01-15
File : 494 Pages
ISBN-13 : 9783319450322


Automorphic Forms And Galois Representations

eBook Download

BOOK EXCERPT:

Part one of a two-volume collection exploring recent developments in number theory related to automorphic forms and Galois representations.

Product Details :

Genre : Mathematics
Author : Fred Diamond
Publisher : Cambridge University Press
Release : 2014-10-16
File : 385 Pages
ISBN-13 : 9781107691926


The Theory Of Zeta Functions Of Root Systems

eBook Download

BOOK EXCERPT:

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell–Tornheim multiple zeta-functions, and Euler–Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten’s volume formula is provided. It is shown that various relations among special values of Euler–Zagier multiple zeta-functions—which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier’s conjecture—are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.

Product Details :

Genre : Mathematics
Author : Yasushi Komori
Publisher : Springer Nature
Release : 2024-02-03
File : 419 Pages
ISBN-13 : 9789819909100


The Eigenbook

eBook Download

BOOK EXCERPT:

​This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their generalizations to automorphic forms for group of higher ranks are of fundamental importance in number theory. For graduate students and newcomers to this field, the book provides a solid introduction to this highly active area of research. For experts, it will offer the convenience of collecting into one place foundational definitions and theorems with complete and self-contained proofs. Written in an engaging and educational style, the book also includes exercises and provides their solution.

Product Details :

Genre : Mathematics
Author : Joël Bellaïche
Publisher : Springer Nature
Release : 2021-08-11
File : 319 Pages
ISBN-13 : 9783030772635


Iwasawa Theory 2012

eBook Download

BOOK EXCERPT:

This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory. Iwasawa theory is a modern and powerful branch of number theory and can be traced back to the Japanese mathematician Kenkichi Iwasawa, who introduced the systematic study of Z_p-extensions and p-adic L-functions, concentrating on the case of ideal class groups. Later this would be generalized to elliptic curves. Over the last few decades considerable progress has been made in automorphic Iwasawa theory, e.g. the proof of the Main Conjecture for GL(2) by Kato and Skinner & Urban. Techniques such as Hida’s theory of p-adic modular forms and big Galois representations play a crucial part. Also a noncommutative Iwasawa theory of arbitrary p-adic Lie extensions has been developed. This volume aims to present a snapshot of the state of art of Iwasawa theory as of 2012. In particular it offers an introduction to Iwasawa theory (based on a preparatory course by Chris Wuthrich) and a survey of the proof of Skinner & Urban (based on a lecture course by Xin Wan).

Product Details :

Genre : Mathematics
Author : Thanasis Bouganis
Publisher : Springer
Release : 2014-12-08
File : 487 Pages
ISBN-13 : 9783642552458


Number Theory

eBook Download

BOOK EXCERPT:

This book collects survey and research papers on various topics in number theory. Although the topics and descriptive details appear varied, they are unified by two underlying principles: first, readability, and second, a smooth transition from traditional approaches to modern ones. Thus, on one hand, the traditional approach is presented in great detail, and on the other, the modernization of the methods in number theory is elaborated.

Product Details :

Genre : Mathematics
Author : Wenpeng Zhang
Publisher : Springer Science & Business Media
Release : 2006-06-05
File : 247 Pages
ISBN-13 : 9780387308296


Fourier Analysis On Number Fields

eBook Download

BOOK EXCERPT:

A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.

Product Details :

Genre : Mathematics
Author : Dinakar Ramakrishnan
Publisher : Springer Science & Business Media
Release : 2013-04-17
File : 372 Pages
ISBN-13 : 9781475730852


Advanced Analytic Number Theory L Functions

eBook Download

BOOK EXCERPT:

Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. This book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.

Product Details :

Genre : Mathematics
Author : Carlos J. Moreno
Publisher : American Mathematical Soc.
Release : 2005
File : 313 Pages
ISBN-13 : 9780821842669