Ensemble Learning Algorithms With Python

eBook Download

BOOK EXCERPT:

Predictive performance is the most important concern on many classification and regression problems. Ensemble learning algorithms combine the predictions from multiple models and are designed to perform better than any contributing ensemble member. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover how to confidently and effectively improve predictive modeling performance using ensemble algorithms.

Product Details :

Genre : Computers
Author : Jason Brownlee
Publisher : Machine Learning Mastery
Release : 2021-04-26
File : 450 Pages
ISBN-13 :


Mastering Machine Learning Algorithms Practical Applications Using Python And R

eBook Download

BOOK EXCERPT:

In the ever-evolving landscape of the modern world, the synergy between technology and management has become a cornerstone of innovation and progress. This book, Mastering Machine Learning Algorithms: Practical Applications Using Python and R, is conceived to bridge the gap between emerging technological advancements in machine learning and their strategic application in various domains. Our objective is to equip readers with the tools and insights necessary to excel in this dynamic field. This book is structured to provide a comprehensive exploration of the methodologies and strategies that define the innovation of machine learning algorithms, particularly focusing on practical applications using Python and R. From foundational theories to advanced implementations, we delve into the critical aspects that drive successful application of machine learning techniques across industries. We have made a concerted effort to present complex concepts in a clear and accessible manner, making this work suitable for a diverse audience, including students, managers, and industry professionals. In authoring this book, we have drawn upon the latest research and best practices to ensure that readers not only gain a robust theoretical understanding but also acquire practical skills that can be applied in real-world scenarios. The chapters are designed to strike a balance between depth and breadth, covering topics ranging from algorithm development and data processing to strategic management of machine learning projects. Additionally, we emphasize the importance of effective communication, dedicating sections to the art of presenting innovative ideas and solutions in a precise and academically rigorous manner. The inspiration for this book arises from a recognition of the crucial role that machine learning algorithms and their practical applications play in shaping the future of industries. We are profoundly grateful to Chancellor Shri Shiv Kumar Gupta of Maharaja Agrasen Himalayan Garhwal University for his unwavering support and vision. His dedication to fostering academic excellence and promoting a culture of innovation has been instrumental in bringing this project to fruition. We hope this book will serve as a valuable resource and inspiration for those eager to deepen their understanding of how machine learning algorithms, applied through Python and R, can be harnessed to drive innovation. We believe that the knowledge and insights contained within these pages will empower readers to lead the way in creating innovative solutions that will define the future of data-driven industries. Thank you for joining us on this journey. Authors

Product Details :

Genre : Computers
Author : AKASH BALAJI MALI NAGARJUNA PUTTA GOKUL SUBRAMANIAN PROF. (DR) ARPIT JAIN
Publisher : DeepMisti Publication
Release : 2024-11-10
File : 168 Pages
ISBN-13 : 9789360444693


Machine Learning Algorithms From Scratch With Python

eBook Download

BOOK EXCERPT:

You must understand algorithms to get good at machine learning. The problem is that they are only ever explained using Math. No longer. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work. Using clear explanations, simple pure Python code (no libraries!) and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement a suite of linear, nonlinear and ensemble machine learning algorithms from scratch.

Product Details :

Genre : Computers
Author : Jason Brownlee
Publisher : Machine Learning Mastery
Release : 2016-11-16
File : 237 Pages
ISBN-13 :


Hands On Ensemble Learning With Python

eBook Download

BOOK EXCERPT:

Combine popular machine learning techniques to create ensemble models using Python Key FeaturesImplement ensemble models using algorithms such as random forests and AdaBoostApply boosting, bagging, and stacking ensemble methods to improve the prediction accuracy of your model Explore real-world data sets and practical examples coded in scikit-learn and KerasBook Description Ensembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model. With its hands-on approach, you'll not only get up to speed on the basic theory but also the application of various ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. Furthermore, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models. By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios. What you will learnImplement ensemble methods to generate models with high accuracyOvercome challenges such as bias and varianceExplore machine learning algorithms to evaluate model performanceUnderstand how to construct, evaluate, and apply ensemble modelsAnalyze tweets in real time using Twitter's streaming APIUse Keras to build an ensemble of neural networks for the MovieLens datasetWho this book is for This book is for data analysts, data scientists, machine learning engineers and other professionals who are looking to generate advanced models using ensemble techniques. An understanding of Python code and basic knowledge of statistics is required to make the most out of this book.

Product Details :

Genre : Computers
Author : George Kyriakides
Publisher : Packt Publishing Ltd
Release : 2019-07-19
File : 284 Pages
ISBN-13 : 9781789617887


Python Machine Learning

eBook Download

BOOK EXCERPT:

Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book Description Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.

Product Details :

Genre : Computers
Author : Sebastian Raschka
Publisher : Packt Publishing Ltd
Release : 2019-12-12
File : 771 Pages
ISBN-13 : 9781789958294


Machine Learning In Python

eBook Download

BOOK EXCERPT:

Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. Predict outcomes using linear and ensemble algorithm families Build predictive models that solve a range of simple and complex problems Apply core machine learning algorithms using Python Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.

Product Details :

Genre : Computers
Author : Michael Bowles
Publisher : John Wiley & Sons
Release : 2015-03-24
File : 361 Pages
ISBN-13 : 9781118961766


Machine Learning Algorithms And Concepts

eBook Download

BOOK EXCERPT:

This book is for machine learning professional & aspiring data scientist who wanted to be established themselves as a machine learning engineer or data science professional. Machine Learning Algorithms & Concepts gives complete idea to begin the phase of machine learning professional. This can be referred as a great starting point to switch the career path from existing profession to a machine learning professional. The book covers all major algorithms, its concept, usage, and other miscellaneous concepts based on situation which helps to its reader to decide in which situation what to be used. This book serves as guide to prepare for interviews, exams, campus work as well as for industry professional. It also covers basic programming which gives fair idea to its reader to learn how to code for machine learning problem statement even if he is a beginner in coding.

Product Details :

Genre : Computers
Author : Sariya Ansari
Publisher : Notion Press
Release : 2023-09-13
File : 220 Pages
ISBN-13 : 9798890669896


Python Deeper Insights Into Machine Learning

eBook Download

BOOK EXCERPT:

Leverage benefits of machine learning techniques using Python About This Book Improve and optimise machine learning systems using effective strategies. Develop a strategy to deal with a large amount of data. Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn Learn to write clean and elegant Python code that will optimize the strength of your algorithms Uncover hidden patterns and structures in data with clustering Improve accuracy and consistency of results using powerful feature engineering techniques Gain practical and theoretical understanding of cutting-edge deep learning algorithms Solve unique tasks by building models Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.

Product Details :

Genre : Computers
Author : Sebastian Raschka
Publisher : Packt Publishing Ltd
Release : 2016-08-31
File : 901 Pages
ISBN-13 : 9781787128545


Machine Learning For Time Series With Python

eBook Download

BOOK EXCERPT:

Get better insights from time-series data and become proficient in model performance analysis Key FeaturesExplore popular and modern machine learning methods including the latest online and deep learning algorithmsLearn to increase the accuracy of your predictions by matching the right model with the right problemMaster time series via real-world case studies on operations management, digital marketing, finance, and healthcareBook Description The Python time-series ecosystem is huge and often quite hard to get a good grasp on, especially for time-series since there are so many new libraries and new models. This book aims to deepen your understanding of time series by providing a comprehensive overview of popular Python time-series packages and help you build better predictive systems. Machine Learning for Time-Series with Python starts by re-introducing the basics of time series and then builds your understanding of traditional autoregressive models as well as modern non-parametric models. By observing practical examples and the theory behind them, you will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering. This book will also guide you in matching the right model to the right problem by explaining the theory behind several useful models. You'll also have a look at real-world case studies covering weather, traffic, biking, and stock market data. By the end of this book, you should feel at home with effectively analyzing and applying machine learning methods to time-series. What you will learnUnderstand the main classes of time series and learn how to detect outliers and patternsChoose the right method to solve time-series problemsCharacterize seasonal and correlation patterns through autocorrelation and statistical techniquesGet to grips with time-series data visualizationUnderstand classical time-series models like ARMA and ARIMAImplement deep learning models, like Gaussian processes, transformers, and state-of-the-art machine learning modelsBecome familiar with many libraries like Prophet, XGboost, and TensorFlowWho this book is for This book is ideal for data analysts, data scientists, and Python developers who want instantly useful and practical recipes to implement today, and a comprehensive reference book for tomorrow. Basic knowledge of the Python Programming language is a must, while familiarity with statistics will help you get the most out of this book.

Product Details :

Genre : Computers
Author : Ben Auffarth
Publisher : Packt Publishing Ltd
Release : 2021-10-29
File : 371 Pages
ISBN-13 : 9781801816106


Python Machine Learning By Example

eBook Download

BOOK EXCERPT:

Author Yuxi (Hayden) Liu teaches machine learning from the fundamentals to building NLP transformers and multimodal models with best practice tips and real-world examples using PyTorch, TensorFlow, scikit-learn, and pandas Key Features Discover new and updated content on NLP transformers, PyTorch, and computer vision modeling Includes a dedicated chapter on best practices and additional best practice tips throughout the book to improve your ML solutions Implement ML models, such as neural networks and linear and logistic regression, from scratch Purchase of the print or Kindle book includes a free PDF copy Book DescriptionThe fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.What you will learn Follow machine learning best practices throughout data preparation and model development Build and improve image classifiers using convolutional neural networks (CNNs) and transfer learning Develop and fine-tune neural networks using TensorFlow and PyTorch Analyze sequence data and make predictions using recurrent neural networks (RNNs), transformers, and CLIP Build classifiers using support vector machines (SVMs) and boost performance with PCA Avoid overfitting using regularization, feature selection, and more Who this book is for This expanded fourth edition is ideal for data scientists, ML engineers, analysts, and students with Python programming knowledge. The real-world examples, best practices, and code prepare anyone undertaking their first serious ML project.

Product Details :

Genre : Computers
Author : Yuxi (Hayden) Liu
Publisher : Packt Publishing Ltd
Release : 2024-07-31
File : 519 Pages
ISBN-13 : 9781835082225