Equivariant Cohomology In Algebraic Geometry

eBook Download

BOOK EXCERPT:

A graduate-level introduction to the core notions of equivariant cohomology, an indispensable tool in several areas of modern mathematics.

Product Details :

Genre : Mathematics
Author : David Anderson
Publisher : Cambridge University Press
Release : 2023-11-30
File : 463 Pages
ISBN-13 : 9781009349987


Equivariant Cohomology In Algebraic Geometry

eBook Download

BOOK EXCERPT:

Intended for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics, this text introduces techniques that are essential in several areas of modern mathematics. With numerous exercises and examples, it covers the core notions and applications of equivariant cohomology.

Product Details :

Genre : Mathematics
Author : David Anderson
Publisher : Cambridge University Press
Release : 2023-10-26
File : 464 Pages
ISBN-13 : 9781009349963


Algebraic Geometry Hirzebruch 70

eBook Download

BOOK EXCERPT:

This book presents the proceedings from the conference on algebraic geometry in honor of Professor Friedrich Hirzebruch's 70th Birthday. The event was held at the Stefan Banach International Mathematical Center in Warsaw (Poland). Topics covered in the book include intersection theory, singularities, low-dimensional manifolds, moduli spaces, number theory, and interactions between mathematical physics and geometry. Also included are articles from notes of two special lectures. The first, by Professor M. Atiyah, describes the important contributions to the field of geometry by Professor Hirzebruch. The second article contains notes from the talk delivered at the conference by Professor Hirzebruch. Contributors to the volume are leading researchers in the field.

Product Details :

Genre : Mathematics
Author : Friedrich Hirzebruch
Publisher : American Mathematical Soc.
Release : 1999
File : 386 Pages
ISBN-13 : 9780821811498


Contributions To Algebraic Geometry

eBook Download

BOOK EXCERPT:

The articles in this volume are the outcome of the Impanga Conference on Algebraic Geometry in 2010 at the Banach Center in Bedlewo. The following spectrum of topics is covered: K3 surfaces and Enriques surfaces Prym varieties and their moduli invariants of singularities in birational geometry differential forms on singular spaces Minimal Model Program linear systems toric varieties Seshadri and packing constants equivariant cohomology Thom polynomials arithmetic questions The main purpose of the volume is to give comprehensive introductions to the above topics, starting from an elementary level and ending with a discussion of current research. The first four topics are represented by the notes from the mini courses held during the conference. In the articles, the reader will find classical results and methods, as well as modern ones. This book is addressed to researchers and graduate students in algebraic geometry, singularity theory, and algebraic topology. Most of the material in this volume has not yet appeared in book form.

Product Details :

Genre : Geometry, Algebraic
Author : Piotr Pragacz
Publisher : European Mathematical Society
Release : 2012
File : 520 Pages
ISBN-13 : 3037191147


Algebraic Geometry And Number Theory

eBook Download

BOOK EXCERPT:

This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

Product Details :

Genre : Mathematics
Author : Hussein Mourtada
Publisher : Birkhäuser
Release : 2017-05-07
File : 240 Pages
ISBN-13 : 9783319477794


Introductory Lectures On Equivariant Cohomology

eBook Download

BOOK EXCERPT:

This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.

Product Details :

Genre : Mathematics
Author : Loring W. Tu
Publisher : Princeton University Press
Release : 2020-03-03
File : 338 Pages
ISBN-13 : 9780691197487


Representation Theories And Algebraic Geometry

eBook Download

BOOK EXCERPT:

The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.

Product Details :

Genre : Mathematics
Author : A. Broer
Publisher : Springer Science & Business Media
Release : 2013-03-09
File : 455 Pages
ISBN-13 : 9789401591317


An Invitation To Modern Enumerative Geometry

eBook Download

BOOK EXCERPT:

This book is based on a series of lectures given by the author at SISSA, Trieste, within the PhD courses Techniques in enumerative geometry (2019) and Localisation in enumerative geometry (2021). The goal of this book is to provide a gentle introduction, aimed mainly at graduate students, to the fast-growing subject of enumerative geometry and, more specifically, counting invariants in algebraic geometry. In addition to the more advanced techniques explained and applied in full detail to concrete calculations, the book contains the proofs of several background results, important for the foundations of the theory. In this respect, this text is conceived for PhD students or research “beginners” in the field of enumerative geometry or related areas. This book can be read as an introduction to Hilbert schemes and Quot schemes on 3-folds but also as an introduction to localisation formulae in enumerative geometry. It is meant to be accessible without a strong background in algebraic geometry; however, three appendices (one on deformation theory, one on intersection theory, one on virtual fundamental classes) are meant to help the reader dive deeper into the main material of the book and to make the text itself as self-contained as possible.

Product Details :

Genre : Mathematics
Author : Andrea T. Ricolfi
Publisher : Springer Nature
Release : 2022-12-14
File : 310 Pages
ISBN-13 : 9783031114991


A Glimpse Into Geometric Representation Theory

eBook Download

BOOK EXCERPT:

This volume contains the proceedings of the AMS Special Session on Combinatorial and Geometric Representation Theory, held virtually on November 20–21, 2021. The articles offer an engaging look into recent advancements in geometric representation theory. Despite diverse subject matters, a common thread uniting the articles of this volume is the power of geometric methods. The authors explore the following five contemporary topics in geometric representation theory: equivariant motivic Chern classes; equivariant Hirzebruch classes and equivariant Chern-Schwartz-MacPherson classes of Schubert cells; locally semialgebraic spaces, Nash manifolds, and their superspace counterparts; support varieties of Lie superalgebras; wreath Macdonald polynomials; and equivariant extensions and solutions of the Deligne-Simpson problem. Each article provides a well-structured overview of its topic, highlighting the emerging theories developed by the authors and their colleagues.

Product Details :

Genre : Mathematics
Author : Mahir Bilen Can
Publisher : American Mathematical Society
Release : 2024-08-07
File : 218 Pages
ISBN-13 : 9781470470906


Snowbird Lectures In Algebraic Geometry

eBook Download

BOOK EXCERPT:

A significant part of the 2004 Summer Research Conference on Algebraic Geometry (Snowbird, UT) was devoted to lectures introducing the participants, in particular, graduate students and recent Ph.D.'s, to a wide swathe of algebraic geometry and giving them a working familiarity with exciting, rapidly developing parts of the field. One of the main goals of the organizers was to allow the participants to broaden their horizons beyond the narrow area in which they are working. A fine selection of topics and a noteworthy list of contributors made the resulting collection of articles a useful resource for everyone interested in getting acquainted with the modern topic of algebraic geometry. The book consists of ten articles covering, among others, the following topics: the minimal model program, derived categories of sheaves on algebraic varieties, Kobayashi hyperbolicity, groupoids and quotients in algebraic geometry, rigid analytic varieties, and equivariant cohomology. Suitable for independent study, this unique volume is intended for graduate students and researchers interested in algebraic geometry.

Product Details :

Genre : Mathematics
Author : Ravi Vakil
Publisher : American Mathematical Soc.
Release : 2005
File : 202 Pages
ISBN-13 : 9780821837191