Tale Cohomology

eBook Download

BOOK EXCERPT:

One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced étale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to étale cohomology, J. S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and étale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of étale sheaves and elementary étale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in étale cohomology -- those of base change, purity, Poincaré duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Product Details :

Genre : Mathematics
Author : James S. Milne
Publisher : Princeton University Press
Release : 2016-10-11
File : 338 Pages
ISBN-13 : 9781400883981


Etale Cohomology Pms 33

eBook Download

BOOK EXCERPT:

One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced étale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to étale cohomology, J. S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and étale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of étale sheaves and elementary étale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in étale cohomology -- those of base change, purity, Poincaré duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Product Details :

Genre : Mathematics
Author : J. S. Milne
Publisher : Princeton University Press
Release : 1980-04-21
File : 346 Pages
ISBN-13 : 0691082383


Elliptic Partial Differential Equations And Quasiconformal Mappings In The Plane Pms 48

eBook Download

BOOK EXCERPT:

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Product Details :

Genre : Mathematics
Author : Kari Astala
Publisher : Princeton University Press
Release : 2009-01-18
File : 708 Pages
ISBN-13 : 0691137773


The Publishers Trade List Annual

eBook Download

BOOK EXCERPT:

Product Details :

Genre : American literature
Author :
Publisher :
Release : 1985
File : 1252 Pages
ISBN-13 : STANFORD:36105210121385


Cohomology Of Arithmetic Groups

eBook Download

BOOK EXCERPT:

This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.

Product Details :

Genre : Mathematics
Author : James W. Cogdell
Publisher : Springer
Release : 2018-08-18
File : 310 Pages
ISBN-13 : 9783319955490


Compactifying Moduli Spaces For Abelian Varieties

eBook Download

BOOK EXCERPT:

This volume presents the construction of canonical modular compactifications of moduli spaces for polarized Abelian varieties (possibly with level structure), building on the earlier work of Alexeev, Nakamura, and Namikawa. This provides a different approach to compactifying these spaces than the more classical approach using toroical embeddings, which are not canonical. There are two main new contributions in this monograph: (1) The introduction of logarithmic geometry as understood by Fontaine, Illusie, and Kato to the study of degenerating Abelian varieties; and (2) the construction of canonical compactifications for moduli spaces with higher degree polarizations based on stack-theoretic techniques and a study of the theta group.

Product Details :

Genre : Mathematics
Author : Martin C. Olsson
Publisher : Springer Science & Business Media
Release : 2008-08-25
File : 286 Pages
ISBN-13 : 9783540705185


Algebraic K Theory And Algebraic Number Theory

eBook Download

BOOK EXCERPT:

This volume contains the proceedings of a seminar on Algebraic $K$-theory and Algebraic Number Theory, held at the East-West Center in Honolulu in January 1987. The seminar, which hosted nearly 40 experts from the U.S. and Japan, was motivated by the wide range of connections between the two topics, as exemplified in the work of Merkurjev, Suslin, Beilinson, Bloch, Ramakrishnan, Kato, Saito, Lichtenbaum, Thomason, and Ihara. As is evident from the diversity of topics represented in these proceedings, the seminar provided an opportunity for mathematicians from both areas to initiate further interactions between these two areas.

Product Details :

Genre : Mathematics
Author : Michael R. Stein
Publisher : American Mathematical Soc.
Release : 1989
File : 506 Pages
ISBN-13 : 9780821850909


Birational Geometry Rational Curves And Arithmetic

eBook Download

BOOK EXCERPT:

​​​​This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.

Product Details :

Genre : Mathematics
Author : Fedor Bogomolov
Publisher : Springer Science & Business Media
Release : 2013-05-17
File : 324 Pages
ISBN-13 : 9781461464822


Motivic Integration And Its Interactions With Model Theory And Non Archimedean Geometry Volume 1

eBook Download

BOOK EXCERPT:

Assembles different theories of motivic integration for the first time, providing all of the necessary background for graduate students and researchers from algebraic geometry, model theory and number theory. In a rapidly-evolving area of research, this volume and Volume 2, which unite the several viewpoints and applications, will prove invaluable.

Product Details :

Genre : Mathematics
Author : Raf Cluckers
Publisher : Cambridge University Press
Release : 2011-09-22
File : 347 Pages
ISBN-13 : 9781139499798


Win Women In Numbers

eBook Download

BOOK EXCERPT:

This is a collection of papers on number theory which evolved out of the workshop WIN-Women In Numbers, held November 2-7, 2008. It includes articles showcasing outcomes from collaborative research initiated during the workshop as well as survey papers aimed at introducing graduate students and recent PhDs to important research topics in number theory.

Product Details :

Genre : Mathematics
Author : Alina Carmen Cojocaru
Publisher : American Mathematical Soc.
Release : 2011
File : 300 Pages
ISBN-13 : 9780821852262