Federated Learning For Iot Applications

eBook Download

BOOK EXCERPT:

This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.

Product Details :

Genre : Technology & Engineering
Author : Satya Prakash Yadav
Publisher : Springer Nature
Release : 2022-02-02
File : 269 Pages
ISBN-13 : 9783030855598


Federated Learning For Smart Communication Using Iot Application

eBook Download

BOOK EXCERPT:

The effectiveness of federated learning in high‐performance information systems and informatics‐based solutions for addressing current information support requirements is demonstrated in this book. To address heterogeneity challenges in Internet of Things (IoT) contexts, Federated Learning for Smart Communication using IoT Application analyses the development of personalized federated learning algorithms capable of mitigating the detrimental consequences of heterogeneity in several dimensions. It includes case studies of IoT‐based human activity recognition to show the efficacy of personalized federated learning for intelligent IoT applications. Features: • Demonstrates how federated learning offers a novel approach to building personalized models from data without invading users’ privacy. • Describes how federated learning may assist in understanding and learning from user behavior in IoT applications while safeguarding user privacy. • Presents a detailed analysis of current research on federated learning, providing the reader with a broad understanding of the area. • Analyses the need for a personalized federated learning framework in cloud‐edge and wireless‐edge architecture for intelligent IoT applications. • Comprises real‐life case illustrations and examples to help consolidate understanding of topics presented in each chapter. This book is recommended for anyone interested in federated learning‐based intelligent algorithms for smart communications.

Product Details :

Genre : Computers
Author : Kaushal Kishor
Publisher : CRC Press
Release : 2024-10-30
File : 275 Pages
ISBN-13 : 9781040146316


Pioneering Smart Healthcare 5 0 With Iot Federated Learning And Cloud Security

eBook Download

BOOK EXCERPT:

The Healthcare sector is experiencing a mindset change with the advent of Healthcare 5.0, bringing forth improved patient care and system efficiency. However, this transformation poses significant challenges. The growing digitization of healthcare systems raises concerns about the security and privacy of patient data, making seamless data sharing and collaboration increasingly complex tasks. Additionally, as the volume of healthcare data expands exponentially, efficient handling and analysis become vital for optimizing healthcare delivery and patient outcomes. Addressing these multifaceted issues is crucial for healthcare professionals, IT experts, data scientists, and researchers seeking to fully harness the potential of Healthcare 5.0. Pioneering Smart Healthcare 5.0 with IoT, Federated Learning, and Cloud Security presents a comprehensive solution to the pressing challenges in the digitalized healthcare industry. This research book dives into the principles of Healthcare 5.0 and explores practical implementation through cloud computing, data analytics, and federated learning. Readers will gain profound insights into the role of cloud computing in managing vast amounts of healthcare data, such as electronic health records and real-time analytics. Cloud-based frameworks, architectures, and relevant use cases are explored to optimize healthcare delivery and improve patient outcomes.

Product Details :

Genre : Medical
Author : Hassan, Ahdi
Publisher : IGI Global
Release : 2024-02-14
File : 372 Pages
ISBN-13 : 9798369326404


Federated Learning

eBook Download

BOOK EXCERPT:

This new book provides an in-depth understanding of federated learning, a new and increasingly popular learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. The volume explores how federated learning integrates AI technologies, such as blockchain, machine learning, IoT, edge computing, and fog computing systems, allowing multiple collaborators to build a robust machine-learning model using a large dataset. It highlights the capabilities and benefits of federated learning, addressing critical issues such as data privacy, data security, data access rights, and access to heterogeneous data. The volume first introduces the general concepts of machine learning and then summarizes the federated learning system setup and its associated terminologies. It also presents a basic classification of FL, the application of FL for various distributed computing scenarios, an integrated view of applications of software-defined networks, etc. The book also explores the role of federated learning in the Internet of Medical Things systems as well. The book provides a pragmatic analysis of strategies for developing a communication-efficient federated learning system. It also details the applicability of blockchain with federated learning on IoT-based systems. It provides an in-depth study of FL-based intrusion detection systems, discussing their taxonomy and functioning and showcasing their superiority over existing systems. The book is unique in that it evaluates the privacy and security aspects in federated learning. The volume presents a comprehensive analysis of some of the common challenges, proven threats, and attack strategies affecting FL systems. Special coverage on protected shot-based federated learning for facial expression recognition is also included. This comprehensive book, Federated Learning: Principles, Paradigms, and Applications, will enable research scholars, information technology professionals, and distributed computing engineers to understand various aspects of federated learning concepts and computational techniques for real-life implementation.

Product Details :

Genre : Computers
Author : Jayakrushna Sahoo
Publisher : CRC Press
Release : 2024-09-20
File : 353 Pages
ISBN-13 : 9781040088593


Handbook Of Research On Ai Equipped Iot Applications In High Tech Agriculture

eBook Download

BOOK EXCERPT:

The agriculture industry is facing significant challenges in meeting the increasing demand for food while also ensuring sustainable development. Traditional agricultural methods are not equipped to meet the demands of the modern world. To overcome these challenges, Advanced Technologies and AI-Equipped IoT Applications in High-Tech Agriculture provides an in-depth analysis of the opportunities and challenges for AI-powered management tools and IoT-equipped techniques for the high-tech agricultural ecosystem. The Handbook of Research on AI-Equipped IoT Applications in High-Tech Agriculture explores advanced methodologies, models, techniques, technologies, and applications along with the concepts of real-time supporting systems to help agricultural producers adjust plans or schedules for taking care of their farms. Additionally, it discusses the role of IoT technologies and AI applications in agricultural ecosystems and their potential to improve product quality and market competitiveness. The book includes discussions on the application of blockchain, biotechnology, drones, robotics, data analytics, and visualization in high-tech agriculture. It is an essential reference for anyone interested in the future of high-tech agriculture, including agricultural analysts, investment analysts, scholars, researchers, academics, professionals, engineers, and students.

Product Details :

Genre : Technology & Engineering
Author : Khang, Alex
Publisher : IGI Global
Release : 2023-08-02
File : 510 Pages
ISBN-13 : 9781668492338


Federated Learning Techniques And Its Application In The Healthcare Industry

eBook Download

BOOK EXCERPT:

Federated Learning is currently an emerging technology in the field of machine learning. Federated Learning is a structure which trains a centralized model for a given assignment, where the data is de-centralized across different edge devices or servers. This enables preservation of the confidentiality of data on various edge devices, as only the updated outcomes of the models are shared with the centralized model. This means the data can remain on each edge device, while we can still train a model using that data.Federated Learning has greatly increased the potential to transmute data in the healthcare industry, enabling healthcare professionals to improve treatment of patients.This book comprises chapters on applying Federated models in the field of healthcare industry.Federated Learning mainly concentrates on securing the privacy of data by training local data in a shared global model without putting the training data in a centralized location. The importance of federated learning lies in its innumerable uses in health care that ranges from maintaining the privacy of raw data of the patients, discover clinically alike patients, forecasting hospitalization due to cardiac events impermanence and probable solutions to the same. The goal of this edited book is to provide a reference guide to the theme.

Product Details :

Genre : Computers
Author : H L Gururaj
Publisher : World Scientific
Release : 2024-05-28
File : 235 Pages
ISBN-13 : 9789811287954


Trust Security And Privacy For Big Data

eBook Download

BOOK EXCERPT:

Data has revolutionized the digital ecosystem. Readily available large datasets foster AI and machine learning automated solutions. The data generated from diverse and varied sources including IoT, social platforms, healthcare, system logs, bio-informatics, etc. contribute to and define the ethos of Big Data which is volume, velocity and variety. Data lakes formed by the amalgamation of data from these sources requires powerful, scalable and resilient storage and processing platforms to reveal the true value hidden inside this data mine. Data formats and its collection from various sources not only introduce unprecedented challenges to different domains including IoT, manufacturing, smart cars, power grids etc., but also highlight the security and privacy issues in this age of big data. Security and privacy in big data is facing many challenges, such as generative adversary networks, efficient encryption and decryption algorithms, encrypted information retrieval, attribute-based encryption, attacks on availability, and reliability. Providing security and privacy for big data storage, transmission, and processing have been attracting much attention in all big data related areas. The book provides timely and comprehensive information for researchers and industry partners in communications and networking domains to review the latest results in security and privacy related work of Big Data. It will serve computer science and cybersecurity communities including researchers, academicians, students, and practitioners who have interest in big data trust privacy and security aspects. It is a comprehensive work on the most recent developments in security of datasets from varied sources including IoT, cyber physical domains, big data architectures, studies for trustworthy computing, and approaches for distributed systems and big data security solutions etc.

Product Details :

Genre : Computers
Author : Mamoun Alazab
Publisher : CRC Press
Release : 2022-06-30
File : 212 Pages
ISBN-13 : 9781000619058


Federated Deep Learning For Healthcare

eBook Download

BOOK EXCERPT:

This book provides a practical guide to federated deep learning for healthcare including fundamental concepts, framework, and the applications comprising domain adaptation, model distillation, and transfer learning. It covers concerns in model fairness, data bias, regulatory compliance, and ethical dilemmas. It investigates several privacy-preserving methods such as homomorphic encryption, secure multi-party computation, and differential privacy. It will enable readers to build and implement federated learning systems that safeguard private medical information. Features: Offers a thorough introduction of federated deep learning methods designed exclusively for medical applications. Investigates privacy-preserving methods with emphasis on data security and privacy. Discusses healthcare scaling and resource efficiency considerations. Examines methods for sharing information among various healthcare organizations while retaining model performance. This book is aimed at graduate students and researchers in federated learning, data science, AI/machine learning, and healthcare.

Product Details :

Genre : Computers
Author : Amandeep Kaur
Publisher : CRC Press
Release : 2024-10-02
File : 267 Pages
ISBN-13 : 9781040126127


Ai Enabled Threat Detection And Security Analysis For Industrial Iot

eBook Download

BOOK EXCERPT:

This contributed volume provides the state-of-the-art development on security and privacy for cyber-physical systems (CPS) and industrial Internet of Things (IIoT). More specifically, this book discusses the security challenges in CPS and IIoT systems as well as how Artificial Intelligence (AI) and Machine Learning (ML) can be used to address these challenges. Furthermore, this book proposes various defence strategies, including intelligent cyber-attack and anomaly detection algorithms for different IIoT applications. Each chapter corresponds to an important snapshot including an overview of the opportunities and challenges of realizing the AI in IIoT environments, issues related to data security, privacy and application of blockchain technology in the IIoT environment. This book also examines more advanced and specific topics in AI-based solutions developed for efficient anomaly detection in IIoT environments. Different AI/ML techniques including deep representation learning, Snapshot Ensemble Deep Neural Network (SEDNN), federated learning and multi-stage learning are discussed and analysed as well. Researchers and professionals working in computer security with an emphasis on the scientific foundations and engineering techniques for securing IIoT systems and their underlying computing and communicating systems will find this book useful as a reference. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, cyber security, and information systems. It also applies to advanced-level students studying electrical engineering and system engineering, who would benefit from the case studies.

Product Details :

Genre : Computers
Author : Hadis Karimipour
Publisher : Springer Nature
Release : 2021-08-03
File : 250 Pages
ISBN-13 : 9783030766139


Federated Learning Systems

eBook Download

BOOK EXCERPT:

This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.

Product Details :

Genre : Technology & Engineering
Author : Muhammad Habib ur Rehman
Publisher : Springer Nature
Release : 2021-06-11
File : 207 Pages
ISBN-13 : 9783030706043