WELCOME TO THE LIBRARY!!!
What are you looking for Book "Fourier And Wavelet Analysis" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
This comprehensive volume develops all of the standard features of Fourier analysis - Fourier series, Fourier transform, Fourier sine and cosine transforms, and wavelets. The books approach emphasizes the role of the "selector" functions, and is not embedded in the usual engineering context, which makes the material more accessible to a wider audience. While there are several publications on the various individual topics, none combine or even include all of the above.
Product Details :
Genre |
: Mathematics |
Author |
: George Bachmann |
Publisher |
: Springer Science & Business Media |
Release |
: 2012-12-06 |
File |
: 510 Pages |
ISBN-13 |
: 9781461205050 |
eBook Download
BOOK EXCERPT:
This comprehensive volume develops all of the standard features of Fourier analysis - Fourier series, Fourier transform, Fourier sine and cosine transforms, and wavelets. The books approach emphasizes the role of the "selector" functions, and is not embedded in the usual engineering context, which makes the material more accessible to a wider audience. While there are several publications on the various individual topics, none combine or even include all of the above.
Product Details :
Genre |
: Mathematics |
Author |
: George Bachmann |
Publisher |
: Springer Science & Business Media |
Release |
: 2002-04-05 |
File |
: 534 Pages |
ISBN-13 |
: 0387988998 |
eBook Download
BOOK EXCERPT:
This book represents the first attempt at a unified picture for the pres ence of the Gibbs (or Gibbs-Wilbraham) phenomenon in applications, its analysis and the different methods of filtering it out. The analysis and filtering cover the familiar Gibbs phenomenon in Fourier series and integral representations of functions with jump discontinuities. In ad dition it will include other representations, such as general orthogonal series expansions, general integral transforms, splines approximation, and continuous as well as discrete wavelet approximations. The mate rial in this book is presented in a manner accessible to upperclassmen and graduate students in science and engineering, as well as researchers who may face the Gibbs phenomenon in the varied applications that in volve the Fourier and the other approximations of functions with jump discontinuities. Those with more advanced backgrounds in analysis will find basic material, results, and motivations from which they can begin to develop deeper and more general results. We must emphasize that the aim of this book (the first on the sUbject): to satisfy such a diverse audience, is quite difficult. In particular, our detailed derivations and their illustrations for an introductory book may very well sound repeti tive to the experts in the field who are expecting a research monograph. To answer the concern of the researchers, we can only hope that this book will prove helpful as a basic reference for their research papers.
Product Details :
Genre |
: Mathematics |
Author |
: A.J. Jerri |
Publisher |
: Springer Science & Business Media |
Release |
: 2013-03-09 |
File |
: 357 Pages |
ISBN-13 |
: 9781475728477 |
eBook Download
BOOK EXCERPT:
A comprehensive, self-contained treatment of Fourier analysis and wavelets—now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature: The development of a Fourier series, Fourier transform, and discrete Fourier analysis Improved sections devoted to continuous wavelets and two-dimensional wavelets The analysis of Haar, Shannon, and linear spline wavelets The general theory of multi-resolution analysis Updated MATLAB code and expanded applications to signal processing The construction, smoothness, and computation of Daubechies' wavelets Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.
Product Details :
Genre |
: Mathematics |
Author |
: Albert Boggess |
Publisher |
: John Wiley & Sons |
Release |
: 2015-08-21 |
File |
: 336 Pages |
ISBN-13 |
: 9781119214328 |
eBook Download
BOOK EXCERPT:
This text gives a clear introduction to the ideas and methods of wavelet analysis, making concepts understandable by relating them to methods in mathematics and engineering. It shows how to apply wavelet analysis to digital signal processing and presents a wide variety of applications.
Product Details :
Genre |
: Mathematics |
Author |
: Howard L. Resnikoff |
Publisher |
: Springer Science & Business Media |
Release |
: 2012-12-06 |
File |
: 446 Pages |
ISBN-13 |
: 9781461205937 |
eBook Download
BOOK EXCERPT:
Wavelet Analysis: Basic Concepts and Applications provides a basic and self-contained introduction to the ideas underpinning wavelet theory and its diverse applications. This book is suitable for master’s or PhD students, senior researchers, or scientists working in industrial settings, where wavelets are used to model real-world phenomena and data needs (such as finance, medicine, engineering, transport, images, signals, etc.). Features: Offers a self-contained discussion of wavelet theory Suitable for a wide audience of post-graduate students, researchers, practitioners, and theorists Provides researchers with detailed proofs Provides guides for readers to help them understand and practice wavelet analysis in different areas
Product Details :
Genre |
: Mathematics |
Author |
: Sabrine Arfaoui |
Publisher |
: CRC Press |
Release |
: 2021-04-20 |
File |
: 255 Pages |
ISBN-13 |
: 9781000369540 |
eBook Download
BOOK EXCERPT:
Wavelet analysis is among the newest additions to the arsenals of mathematicians, scientists, and engineers, and offers common solutions to diverse problems. However, students and professionals in some areas of engineering and science, intimidated by the mathematical background necessary to explore this subject, have been unable to use this powerful tool. The first book on the topic for readers with minimal mathematical backgrounds, Wavelet Analysis with Applications to Image Processing provides a thorough introduction to wavelets with applications in image processing. Unlike most other works on this subject, which are often collections of papers or research advances, this book offers students and researchers without an extensive math background a step-by-step introduction to the power of wavelet transforms and applications to image processing. The first four chapters introduce the basic topics of analysis that are vital to understanding the mathematics of wavelet transforms. Subsequent chapters build on the information presented earlier to cover the major themes of wavelet analysis and its applications to image processing. This is an ideal introduction to the subject for students, and a valuable reference guide for professionals working in image processing.
Product Details :
Genre |
: Mathematics |
Author |
: Lakshman Prasad |
Publisher |
: CRC Press |
Release |
: 2020-01-29 |
File |
: 296 Pages |
ISBN-13 |
: 9781000714166 |
eBook Download
BOOK EXCERPT:
The continuous wavelet transform has deep mathematical roots in the work of Alberto P. Calderon. His seminal paper on complex method of interpolation and intermediate spaces provided the main tool for describing function spaces and their approximation properties. The Calderon identities allow one to give integral representations of many natural operators by using simple pieces of such operators, which are more suited for analysis. These pieces, which are essentially spectral projections, can be chosen in clever ways and have proved to be of tremendous utility in various problems of numerical analysis, multidimensional signal processing, video data compression, and reconstruction of high resolution images and high quality speech. A proliferation of research papers and a couple of books, written in English (there is an earlier book written in French), have emerged on the subject. These books, so far, are written by specialists for specialists, with a heavy mathematical flavor, which is characteristic of the Calderon-Zygmund theory and related research of Duffin-Schaeffer, Daubechies, Grossman, Meyer, Morlet, Chui, and others. Randy Young's monograph is geared more towards practitioners and even non-specialists, who want and, probably, should be cognizant of the exciting proven as well as potential benefits which have either already emerged or are likely to emerge from wavelet theory.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Randy K. Young |
Publisher |
: Springer Science & Business Media |
Release |
: 2012-12-06 |
File |
: 233 Pages |
ISBN-13 |
: 9781461535843 |
eBook Download
BOOK EXCERPT:
This book discusses the theory of wavelets on local fields of positive characteristic. The discussion starts with a thorough introduction to topological groups and local fields. It then provides a proof of the existence and uniqueness of Haar measures on locally compact groups. It later gives several examples of locally compact groups and describes their Haar measures. The book focuses on multiresolution analysis and wavelets on a local field of positive characteristic. It provides characterizations of various functions associated with wavelet analysis such as scaling functions, wavelets, MRA-wavelets and low-pass filters. Many other concepts which are discussed in details are biorthogonal wavelets, wavelet packets, affine and quasi-affine frames, MSF multiwavelets, multiwavelet sets, generalized scaling sets, scaling sets, unconditional basis properties of wavelets and shift invariant spaces.
Product Details :
Genre |
: Mathematics |
Author |
: Biswaranjan Behera |
Publisher |
: Springer Nature |
Release |
: 2022-01-01 |
File |
: 345 Pages |
ISBN-13 |
: 9789811678813 |
eBook Download
BOOK EXCERPT:
The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance provides an overview of the theory and practical applications of wavelet transform methods. The author uses several hundred illustrations, some in color, to convey mathematical concepts and the results of applications. The first chapter presents a brief overview of the wavelet transform, including a short history. The remainder of the book is split into two parts: the first part discusses the mathematics of both discrete and continuous wavelet transforms while the second part deals with applications in a variety of subject areas, such as geophysics, medicine, fluid turbulence, engineering testing, speech and sound analysis, image analysis, and data compression. These application chapters make the reader aware of the similarities that exist in the use of wavelet transform analysis across disciplines. A comprehensive list of more than 700 references provides a valuable resource for further study. The book is designed specifically for the applied reader in science, engineering, medicine, finance, or any other of the growing number of application areas. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, providing a large number of examples of their use across a wide range of disciplines. Readers already acquainted with wavelets can use the book to broaden their perspective.
Product Details :
Genre |
: Science |
Author |
: Paul S Addison |
Publisher |
: CRC Press |
Release |
: 2002-07-15 |
File |
: 384 Pages |
ISBN-13 |
: 1420033395 |