Fractional Dynamics Anomalous Transport And Plasma Science

eBook Download

BOOK EXCERPT:

This book collects interrelated lectures on fractal dynamics, anomalous transport and various historical and modern aspects of plasma sciences and technology. The origins of plasma science in connection to electricity and electric charges and devices leading to arc plasma are explored in the first contribution by Jean-Marc Ginoux and Thomas Cuff. The second important historic connection with plasmas was magnetism and the magnetron. Victor J. Law and Denis P. Dowling, in the second contribution, review the history of the magnetron based on the development of thermionic diode valves and related devices. In the third chapter, Christos H Skiadas and Charilaos Skiadas present and apply diffusion theory and solution strategies to a number of stochastic processes of interest. Anomalous diffusion by the fractional Fokker-Planck equation and Lévy stable processes are studied by Johan Anderson and Sara Moradi in the fourth contribution. They consider the motion of charged particles in a 3-dimensional magnetic field in the presence of linear friction and of a stochastic electric field. Analysis of low-frequency instabilities in a low-temperature magnetized plasma is presented by Dan-Gheorghe Dimitriu, Maricel Agop in the fifth chapter. The authors refer to experimental results of the Innsbruck Q-machine and provide an analytical formulation of the related theory. In chapter six, Stefan Irimiciuc, Dan-Gheorghe Dimitriu, Maricel Agop propose a theoretical model to explain the dynamics of charged particles in a plasma discharge with a strong flux of electrons from one plasma structure to another. The theory and applications of fractional derivatives in many-particle disordered large systems are explored by Z.Z. Alisultanov, A.M. Agalarov, A.A. Potapov, G.B. Ragimkhanov. In chapter eight, Maricel Agop, Alina Gavrilut ̧ and Gabriel Crumpei explore the motion of physical systems that take place on continuous but non-differentiable curves (fractal curves). Finally in the last chapter S.L. Cherkas and V.L. Kalashnikov consider the perturbations of a plasma consisting of photons, baryons, and electrons in a linearly expanding (Milne-like) universe taking into account the metric tensor and vacuum perturbations.

Product Details :

Genre : Science
Author : Christos H. Skiadas
Publisher : Springer
Release : 2018-12-11
File : 207 Pages
ISBN-13 : 9783030044831


Quantitative Methods In Demography

eBook Download

BOOK EXCERPT:

This book provides quantitative and applied methodologies in the Covid-19 era exploring important issues in demography, population studies, and health. It provides insight into health and health measures as to the healthy life years lost and the healthy life expectancy related to Covid-19 pandemic. It also describes mortality and survival and focuses on data analysis in demography and population studies. Special methods and applications in demography and society are also described, thereby including applications in society, pension and insurance. As such, this book is a valuable guide for researchers, theoreticians and practitioners from various scientific fields.

Product Details :

Genre : Social Science
Author : Christos H. Skiadas
Publisher : Springer Nature
Release : 2022-05-30
File : 497 Pages
ISBN-13 : 9783030930059


Nonequilibrium Statistical Physics Of Small Systems

eBook Download

BOOK EXCERPT:

This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores. The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical systems. By providing an up-to-date survey of small systems physics, the text serves as both a valuable reference for experienced researchers and as an ideal starting point for graduate-level students entering this newly emerging research field.

Product Details :

Genre : Science
Author : Rainer Klages
Publisher : John Wiley & Sons
Release : 2013-03-15
File : 402 Pages
ISBN-13 : 9783527658725


Long Range Interactions Stochasticity And Fractional Dynamics

eBook Download

BOOK EXCERPT:

In memory of Dr. George Zaslavsky, "Long-range Interactions, Stochasticity and Fractional Dynamics" covers the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.

Product Details :

Genre : Science
Author : Albert C. J. Luo
Publisher : Springer Science & Business Media
Release : 2011-01-04
File : 327 Pages
ISBN-13 : 9783642123436


Fractional Quantum Mechanics

eBook Download

BOOK EXCERPT:

Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics.This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder.The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework.Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process.The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique and applications of fractional calculus in various research areas. It is useful to skilled researchers as well as to graduate students looking for new ideas and advanced approaches.

Product Details :

Genre : Science
Author : Nick Laskin
Publisher : World Scientific
Release : 2018-05-28
File : 358 Pages
ISBN-13 : 9789813223813


Dispersive Kinetics

eBook Download

BOOK EXCERPT:

Dynamical processes in which many timescales coexist are called dispersive. The rate coefficients for dispersive processes depend on time. In the case of a chemical reaction, the time dependence of the rate coefficient, k(t), termed the specific reaction rate, is rationalized in the following way. Reactions by their very nature have to disturb reactivity distributions of the reactants in condensed media, as the more reactive species are the first ones to disappear from the system. The extent of this disturbance depends on the ratio of the rates of reactions to the rate of internal rearrangements (mixing) in the system restoring the initial distribution in reactivity of reactants. If the rates of chemical reactions exceed the rates of internal rearrangements, then the initial distributions in reactant reactivity are not preserved during the course of reactions and the specific reaction rates depend on time. Otherwise the extent of disturbance is negligible and classical kinetics, with a constant specific reaction rate, k, termed the reaction rate constant, may be valid as an approximation. In condensed media dispersive dynamical processes are endemic and this is the first monograph devoted to these processes.

Product Details :

Genre : Science
Author : Andrzej Plonka
Publisher : Springer Science & Business Media
Release : 2013-04-17
File : 238 Pages
ISBN-13 : 9789401596589


12th Chaotic Modeling And Simulation International Conference

eBook Download

BOOK EXCERPT:

Gathering the proceedings of the 12th CHAOS2019 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.

Product Details :

Genre : Science
Author : Christos H. Skiadas
Publisher : Springer Nature
Release : 2020-02-07
File : 309 Pages
ISBN-13 : 9783030395155


Lie Symmetry Analysis Of Fractional Differential Equations

eBook Download

BOOK EXCERPT:

The trajectory of fractional calculus has undergone several periods of intensive development, both in pure and applied sciences. During the last few decades fractional calculus has also been associated with the power law effects and its various applications. It is a natural to ask if fractional calculus, as a nonlocal calculus, can produce new results within the well-established field of Lie symmetries and their applications. In Lie Symmetry Analysis of Fractional Differential Equations the authors try to answer this vital question by analyzing different aspects of fractional Lie symmetries and related conservation laws. Finding the exact solutions of a given fractional partial differential equation is not an easy task, but is one that the authors seek to grapple with here. The book also includes generalization of Lie symmetries for fractional integro differential equations. Features Provides a solid basis for understanding fractional calculus, before going on to explore in detail Lie Symmetries and their applications Useful for PhD and postdoc graduates, as well as for all mathematicians and applied researchers who use the powerful concept of Lie symmetries Filled with various examples to aid understanding of the topics

Product Details :

Genre : Mathematics
Author : Mir Sajjad Hashemi
Publisher : CRC Press
Release : 2020-07-09
File : 223 Pages
ISBN-13 : 9781000068931


Anomalous Transport

eBook Download

BOOK EXCERPT:

This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma physics, glassy material, cell science, and socio-economic aspects. The book will be of interest to both theorists and experimentalists in nonlinear dynamics, statistical physics and stochastic processes. It also forms an ideal starting point for graduate students moving into this area. 18 chapters written by internationally recognized experts in this field provide in-depth introductions to fundamental aspects of anomalous transport.

Product Details :

Genre : Science
Author : Rainer Klages
Publisher : John Wiley & Sons
Release : 2008-09-02
File : 614 Pages
ISBN-13 : 3527407227


Fractional Kinetics In Solids

eBook Download

BOOK EXCERPT:

The standard (Markovian) transport model based on the Boltzmann equation cannot describe some non-equilibrium processes called anomalous that take place in many disordered solids. Causes of anomality lie in non-uniformly scaled (fractal) spatial heterogeneities, in which particle trajectories take cluster form. Furthermore, particles can be located in some domains of small sizes (traps) for a long time. Estimations show that path length and waiting time distributions are often characterized by heavy tails of the power law type. This behavior allows the introduction of time and space derivatives of fractional orders. Distinction of path length distribution from exponential is interpreted as a consequence of media fractality, and analogous property of waiting time distribution as a presence of memory. In this book, a novel approach using equations with derivatives of fractional orders is applied to describe anomalous transport and relaxation in disordered semiconductors, dielectrics and quantum dot systems. A relationship between the self-similarity of transport, the Levy stable limiting distributions and the kinetic equations with fractional derivatives is established. It is shown that unlike the well-known Scher Montroll and Arkhipov Rudenko models, which are in a sense alternatives to the normal transport model, fractional differential equations provide a unified mathematical framework for describing normal and dispersive transport. The fractional differential formalism allows the equations of bipolar transport to be written down and transport in distributed dispersion systems to be described. The relationship between fractional transport equations and the generalized limit theorem reveals the probabilistic aspects of the phenomenon in which a dispersive to Gaussian transport transition occurs in a time-of-flight experiment as the applied voltage is decreased and/or the sample thickness increased. Recent experiments devoted to studies of transport in quantum dot arrays are discussed in the framework of dispersive transport models. The memory phenomena in systems under consideration are discussed in the analysis of fractional equations. It is shown that the approach based on the anomalous transport models and the fractional kinetic equations may be very useful in some problems that involve nano-sized systems. These are photon counting statistics of blinking single quantum dot fluorescence, relaxation of current in colloidal quantum dot arrays, and some others.

Product Details :

Genre : Mathematics
Author : Vladimir Vasilʹevich Uchaĭkin
Publisher : World Scientific
Release : 2013
File : 274 Pages
ISBN-13 : 9789814355421