Fractional Quantum Hall Effects New Developments

eBook Download

BOOK EXCERPT:

The fractional quantum Hall effect has been one of the most active areas of research in quantum condensed matter physics for nearly four decades, serving as a paradigm for unexpected and exotic emergent behavior arising from interactions. This book, featuring a collection of articles written by experts and a Foreword by Klaus von Klitzing, the discoverer of quantum Hall effect and winner of 1985 Nobel Prize in physics, aims to provide a coherent account of the exciting new developments and the current status of the field.

Product Details :

Genre : Science
Author : Bertrand I Halperin
Publisher : World Scientific
Release : 2020-06-09
File : 551 Pages
ISBN-13 : 9789811217500


Quantum Hall Effects Recent Theoretical And Experimental Developments 3rd Edition

eBook Download

BOOK EXCERPT:

Enthusiasm for research on the quantum Hall effect (QHE) is unbounded. The QHE is one of the most fascinating and beautiful phenomena in all branches of physics. Tremendous theoretical and experimental developments are still being made in this sphere. Composite bosons, composite fermions and anyons were among distinguishing ideas in the original edition.In the 2nd edition, fantastic phenomena associated with the interlayer phase coherence in the bilayer system were extensively described. The microscopic theory of the QHE was formulated based on the noncommutative geometry. Furthermore, the unconventional QHE in graphene was reviewed, where the electron dynamics can be treated as relativistic Dirac fermions and even the supersymmetric quantum mechanics plays a key role.In this 3rd edition, all chapters are carefully reexamined and updated. A highlight is the new chapter on topological insulators. Indeed, the concept of topological insulator stems from the QHE. Other new topics are recent prominent experimental discoveries in the QHE, provided by the experimentalists themselves in Part V. This new edition presents an instructive and comprehensive overview of the QHE. It is also suitable for an introduction to quantum field theory with vividly described applications. Only knowledge of quantum mechanics is assumed. This book is ideal for students and researchers in condensed matter physics, particle physics, theoretical physics and mathematical physics.

Product Details :

Genre : Science
Author : Zyun Francis Ezawa
Publisher : World Scientific Publishing Company
Release : 2013-03-21
File : 928 Pages
ISBN-13 : 9789814518475


Semiconductor Physics

eBook Download

BOOK EXCERPT:

This handbook gives a complete and detailed survey of the field of semiconductor physics. It addresses every fundamental principle, the most important research topics and results, as well as conventional and emerging new areas of application. Additionally it provides all essential reference material on crystalline bulk, low-dimensional, and amorphous semiconductors, including valuable data on their optical, transport, and dynamic properties. This updated and extended second edition includes essential coverage of rapidly advancing areas in semiconductor physics, such as topological insulators, quantum optics, magnetic nanostructures and spintronic systems. Richly illustrated and authored by a duo of internationally acclaimed experts in solar energy and semiconductor physics, this handbook delivers in-depth treatment of the field, reflecting a combined experience spanning several decades as both researchers and educators. Offering a unique perspective on many issues, Semiconductor Physics is an invaluable reference for physicists, materials scientists and engineers throughout academia and industry.

Product Details :

Genre : Technology & Engineering
Author : Karl W. Böer
Publisher : Springer Nature
Release : 2023-02-02
File : 1408 Pages
ISBN-13 : 9783031182860


Perspectives In Quantum Hall Effects

eBook Download

BOOK EXCERPT:

The discovery of the quantized and fractional Quantum Hall Effect phenomena is among the most important physics findings in the latter half of this century. The precise quantization of the electrical resistance involved in the quantized Hall effect phenomena has led to the new definition of the resistance standard and has metrologically affected all of science and technology. This resource consists of contributions from the top researchers in the field who present recent experimental and theoretical developments. Each chapter is self-contained and includes its own set of references guiding readers to original papers and further reading on the topic.

Product Details :

Genre : Science
Author : Sankar Das Sarma
Publisher : John Wiley & Sons
Release : 2008-07-11
File : 444 Pages
ISBN-13 : 9783527617265


New Developments Of Integrable Systems And Long Ranged Interaction Models

eBook Download

BOOK EXCERPT:

This volume covers the recent developments of the exact solvable models, Yangian symmetry, the long-ranged interaction models and high-dimensional integrable systems. The authors are all experts in their fields. The volume provides a systematic introduction to statistical and mathematical physics and contains review papers and other contributions.

Product Details :

Genre :
Author : Mo-lin Ge
Publisher : World Scientific
Release : 1995-05-31
File : 186 Pages
ISBN-13 : 9789814549752


Topologically Ordered Zigzag Nanoribbon E 2 Fractionally Charged Anyons And Spin Charge Separation

eBook Download

BOOK EXCERPT:

This is the first graduate level textbook of topologically ordered phases with emphasis on graphene zigzag nanoribbons. It also explains common properties of several other topologically ordered phases as well as the e/2 fractional charge quantization and spin-charge separation of an electron.

Product Details :

Genre : Science
Author : Eric Sung Ryul Yang
Publisher : World Scientific
Release : 2023-03-21
File : 564 Pages
ISBN-13 : 9789811261916


The Fractional Quantum Hall Effect

eBook Download

BOOK EXCERPT:

The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new struc tures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the ex perimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron gas, where the positive background charge is well separated from the two dimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semi conductor materials and devices, especially in the field of two-dimensional electron systems.

Product Details :

Genre : Science
Author : Tapash Chakraborty
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 186 Pages
ISBN-13 : 9783642971013


The Quantum Hall Effects

eBook Download

BOOK EXCERPT:

The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new struc tures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the ex perimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron the positive background charge is well separated from the two gas, where dimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semi conductor materials and devices, especially in the field of two-dimensional electron systems.

Product Details :

Genre : Science
Author : Tapash Chakraborty
Publisher : Springer Science & Business Media
Release : 2013-03-12
File : 317 Pages
ISBN-13 : 9783642793196


The Genesis Of Technoscientific Revolutions

eBook Download

BOOK EXCERPT:

Research powers innovation and technoscientific advance, but it is due for a rethink, one consistent with its deeply holistic nature, requiring deeply human nurturing. Research is a deeply human endeavor that must be nurtured to achieve its full potential. As with tending a garden, care must be taken to organize, plant, feed, and weedÑand the manner in which this nurturing is done must be consistent with the nature of what is being nurtured. In The Genesis of Technoscientific Revolutions, Venkatesh Narayanamurti and Jeffrey Tsao propose a new and holistic system, a rethinking of the nature and nurturing of research. They share lessons from their vast research experience in the physical sciences and engineering, as well as from perspectives drawn from the history and philosophy of science and technology, research policy and management, and the evolutionary biological, complexity, physical, and economic sciences. Narayanamurti and Tsao argue that research is a recursive, reciprocal process at many levels: between science and technology; between questions and answer finding; and between the consolidation and challenging of conventional wisdom. These fundamental aspects of the nature of research should be reflected in how it is nurtured. To that end, Narayanamurti and Tsao propose aligning organization, funding, and governance with research; embracing a culture of holistic technoscientific exploration; and instructing people with care and accountability.

Product Details :

Genre : Technology & Engineering
Author : Venkatesh Narayanamurti
Publisher : Harvard University Press
Release : 2021-11-16
File : 248 Pages
ISBN-13 : 9780674251854


Topological Phase Transitions And New Developments

eBook Download

BOOK EXCERPT:

Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.

Product Details :

Genre : Science
Author : Lars Brink
Publisher : World Scientific
Release : 2018-08-13
File : 263 Pages
ISBN-13 : 9789813271357