eBook Download
BOOK EXCERPT:
Product Details :
Genre | : Algebraic fields |
Author | : Klaus Haberland |
Publisher | : |
Release | : 1978 |
File | : 152 Pages |
ISBN-13 | : UOM:39015015612628 |
Download PDF Ebooks Easily, FREE and Latest
WELCOME TO THE LIBRARY!!!
What are you looking for Book "Galois Cohomology Of Algebraic Number Fields" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
Genre | : Algebraic fields |
Author | : Klaus Haberland |
Publisher | : |
Release | : 1978 |
File | : 152 Pages |
ISBN-13 | : UOM:39015015612628 |
This is an updated English translation of Cohomologie Galoisienne, published more than thirty years ago as one of the very first versions of Lecture Notes in Mathematics. It includes a reproduction of an influential paper by R. Steinberg, together with some new material and an expanded bibliography.
Genre | : Mathematics |
Author | : Jean-Pierre Serre |
Publisher | : Springer Science & Business Media |
Release | : 2013-12-01 |
File | : 215 Pages |
ISBN-13 | : 9783642591419 |
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
Genre | : Mathematics |
Author | : Jürgen Neukirch |
Publisher | : Springer Science & Business Media |
Release | : 2013-09-26 |
File | : 831 Pages |
ISBN-13 | : 9783540378891 |
This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.
Genre | : Mathematics |
Author | : David Harari |
Publisher | : Springer Nature |
Release | : 2020-06-24 |
File | : 336 Pages |
ISBN-13 | : 9783030439019 |
The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.
Genre | : Mathematics |
Author | : Brian David Conrad |
Publisher | : American Mathematical Soc. |
Release | : |
File | : 588 Pages |
ISBN-13 | : 0821886916 |
From the reviews of the first printing, published as Volume 62 of the Encyclopaedia of Mathematical Sciences: "... The author succeeded in an excellent way to describe the various points of view under which Class Field Theory can be seen. ... In any case the author succeeded to write a very readable book on these difficult themes." Monatshefte fuer Mathematik, 1994 "... Koch's book is written mostly for non-specialists. It is an up-to-date account of the subject dealing with mostly general questions. Special results appear only as illustrating examples for the general features of the theory. It is supposed that the reader has good general background in the fields of modern (abstract) algebra and elementary number theory. We recommend this volume mainly to graduate studens and research mathematicians." Acta Scientiarum Mathematicarum, 1993
Genre | : Mathematics |
Author | : H. Koch |
Publisher | : Springer Science & Business Media |
Release | : 1997-09-12 |
File | : 280 Pages |
ISBN-13 | : 3540630031 |
This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.
Genre | : Mathematics |
Author | : Jürgen Neukirch |
Publisher | : Springer Science & Business Media |
Release | : 2013-03-14 |
File | : 583 Pages |
ISBN-13 | : 9783662039830 |
This volume began as the last part of a one-term graduate course given at the Fields Institute for Research in the Mathematical Sciences in the Autumn of 1993. The course was one of four associated with the 1993-94 Fields Institute programme, which I helped to organise, entitled "Artin L-functions". Published as [132]' the final chapter of the course introduced a manner in which to construct class-group valued invariants from Galois actions on the algebraic K-groups, in dimensions two and three, of number rings. These invariants were inspired by the analogous Chin burg invariants of [34], which correspond to dimensions zero and one. The classical Chinburg invariants measure the Galois structure of classical objects such as units in rings of algebraic integers. However, at the "Galois Module Structure" workshop in February 1994, discussions about my invariant (0,1 (L/ K, 3) in the notation of Chapter 5) after my lecture revealed that a number of other higher-dimensional co homological and motivic invariants of a similar nature were beginning to surface in the work of several authors. Encouraged by this trend and convinced that K-theory is the archetypical motivic cohomology theory, I gratefully took the opportunity of collaboration on computing and generalizing these K-theoretic invariants. These generalizations took several forms - local and global, for example - as I followed part of number theory and the prevalent trends in the "Galois Module Structure" arithmetic geometry.
Genre | : Mathematics |
Author | : Victor P. Snaith |
Publisher | : Birkhäuser |
Release | : 2012-12-06 |
File | : 318 Pages |
ISBN-13 | : 9783034882071 |
This volume contains the proceedings of a seminar on Algebraic $K$-theory and Algebraic Number Theory, held at the East-West Center in Honolulu in January 1987. The seminar, which hosted nearly 40 experts from the U.S. and Japan, was motivated by the wide range of connections between the two topics, as exemplified in the work of Merkurjev, Suslin, Beilinson, Bloch, Ramakrishnan, Kato, Saito, Lichtenbaum, Thomason, and Ihara. As is evident from the diversity of topics represented in these proceedings, the seminar provided an opportunity for mathematicians from both areas to initiate further interactions between these two areas.
Genre | : Mathematics |
Author | : Michael R. Stein |
Publisher | : American Mathematical Soc. |
Release | : 1989 |
File | : 506 Pages |
ISBN-13 | : 9780821850909 |
These notes deal with a set of interrelated problems and results in algebraic number theory, in which there has been renewed activity in recent years. The underlying tool is the theory of the central extensions and, in most general terms, the underlying aim is to use class field theoretic methods to reach beyond Abelian extensions. One purpose of this book is to give an introductory survey, assuming the basic theorems of class field theory as mostly recalled in section 1 and giving a central role to the Tate cohomology groups $\hat H{}^{-1}$. The principal aim is, however, to use the general theory as developed here, together with the special features of class field theory over $\mathbf Q$, to derive some rather strong theorems of a very concrete nature, with $\mathbf Q$ as base field. The specialization of the theory of central extensions to the base field $\mathbf Q$ is shown to derive from an underlying principle of wide applicability. The author describes certain non-Abelian Galois groups over the rational field and their inertia subgroups, and uses this description to gain information on ideal class groups of absolutely Abelian fields, all in entirely rational terms. Precise and explicit arithmetic results are obtained, reaching far beyond anything available in the general theory. The theory of the genus field, which is needed as background as well as being of independent interest, is presented in section 2. In section 3, the theory of central extension is developed. The special features over ${\mathbf Q}$ are pointed out throughout. Section 4 deals with Galois groups, and applications to class groups are considered in section 5. Finally, section 6 contains some remarks on the history and literature, but no completeness is attempted.
Genre | : Mathematics |
Author | : Albrecht Fröhlich |
Publisher | : American Mathematical Soc. |
Release | : 1983 |
File | : 96 Pages |
ISBN-13 | : 9780821850220 |