eBook Download
BOOK EXCERPT:
Product Details :
Genre | : Science |
Author | : Leilei Si |
Publisher | : Frontiers Media SA |
Release | : 2023-05-11 |
File | : 214 Pages |
ISBN-13 | : 9782832523292 |
Download PDF Ebooks Easily, FREE and Latest
WELCOME TO THE LIBRARY!!!
What are you looking for Book "Gas Water Rock Interaction And Multi Physical Field Coupling Mechanism" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
Genre | : Science |
Author | : Leilei Si |
Publisher | : Frontiers Media SA |
Release | : 2023-05-11 |
File | : 214 Pages |
ISBN-13 | : 9782832523292 |
This proceedings volume contains over 300 papers on rock mechanics and engineering with contributors from all over Asia and many other parts of the world. Seven keynote papers summarize the state-of-the-art in rock engineering including topics such as underground rock caverns. The technical papers cover a wide range of rock mechanics and engineering topics: rock tunnels, caverns, mining, rock slopes and dams, rock blasting, rock burst and failure, rock properties, rock mass, rock joints, and block theory. Numerous valuable rock engineering case studies are also reported.This volume should serve as a useful reference for the engineers and researchers in rock mechanics and rock engineering.
Genre | : Technology & Engineering |
Author | : C. F. Leung |
Publisher | : World Scientific |
Release | : 2006 |
File | : 527 Pages |
ISBN-13 | : 9789812704375 |
This book mainly focuses on the adaptive analysis of damage and fracture in rock, taking into account multiphysical fields coupling (thermal, hydro, mechanical, and chemical fields). This type of coupling is a crucial aspect in practical engineering for e.g. coal mining, oil and gas exploration, and civil engineering. However, understanding the influencing mechanisms and preventing the disasters resulting from damage and fracture evolution in rocks require high-precision and reliable solutions. This book proposes adaptive numerical algorithms and simulation analysis methods that offer significant advantages in terms of accuracy and reliability. It helps readers understand these innovative methods quickly and easily. The content consists of: (1) a finite element algorithm for modeling the continuum damage evolution in rocks, (2) adaptive finite element analysis for continuum damage evolution and determining the wellbore stability of transversely isotropic rock, (3) an adaptive finite element algorithm for damage detection in non-uniform Euler–Bernoulli beams with multiple cracks, using natural frequencies, (4) adaptive finite element–discrete element analysis for determining multistage hydrofracturing in naturally fractured reservoirs, (5) adaptive finite element–discrete element analysis for multistage supercritical CO2 fracturing and microseismic modeling, and (6) an adaptive finite element–discrete element–finite volume algorithm for 3D multiscale propagation of hydraulic fracture networks, taking into account hydro-mechanical coupling. Given its scope, the book offers a valuable reference guide for researchers, postgraduates and undergraduates majoring in engineering mechanics, mining engineering, geotechnical engineering, and geological engineering.
Genre | : Science |
Author | : Yongliang Wang |
Publisher | : Springer Nature |
Release | : 2020-08-31 |
File | : 204 Pages |
ISBN-13 | : 9789811571978 |
In this dissertation, three simulators (i.e. TOUGH2MP, TOUGHREACT and FLAC3D) were used to simulate the complex physical and chemical interactions induced by CO2 sequestration. The simulations were done instages, ranging from the two phase (water and CO2) fluid flow (H2), through coupled hydro-mechanical effects (H2M) and geochemical responses (i.e. CO2-water-rock interactions (H2C)), to the extension of CCS to CCUS by the application of combined geothermal production and CO2 sequestration technologies. The findings of this study are essential for a thorough understanding of the complex interactions in the multiphase, multicomponent porous media controlled by different physical and chemical mechanisms. Furthermore, the simulation results will provide an invaluable reference for field operations in CCS projects, especially for the full-integration pilot scale CCS project launched in the Ordos Basin. Subsequently, a preliminary site selection scheme for the combined geothermal production and CO2 sequestration was set up, which considered various factorsinvolved in site selection, ranging from safety, economical, environmental and technical issues. This work provides an important framework for the combined geothermal production and CO2 sequestration project. However, further numerical and field studies are still needed to improve on a series of criteria and related parameters necessary for a better understanding of the technology.
Genre | : Science |
Author | : Hejuan Liu |
Publisher | : Cuvillier Verlag |
Release | : 2014-11-10 |
File | : 285 Pages |
ISBN-13 | : 9783736948426 |
Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage. - Includes the underlying scientific research, as well as the risks associated with geological carbon storage - Covers the topic of geological carbon storage from various disciplines, addressing the multi-scale and multi-physics aspects of geological carbon storage - Organized by discipline for ease of navigation
Genre | : Science |
Author | : Pania Newell |
Publisher | : Elsevier |
Release | : 2018-09-06 |
File | : 447 Pages |
ISBN-13 | : 9780128127537 |
This book gathers selected papers from the 8th International Field Exploration and Development Conference (IFEDC 2019) and addresses a broad range of topics, including: Low Permeability Reservoir, Unconventional Tight & Shale Oil Reservoir, Unconventional Heavy Oil and Coal Bed Gas, Digital and Intelligent Oilfield, Reservoir Dynamic Analysis, Oil and Gas Reservoir Surveillance and Management, Oil and Gas Reservoir Evaluation and Modeling, Drilling and Production Operation, Enhancement of Recovery, Oil and Gas Reservoir Exploration. The conference not only provided a platform to exchange experiences, but also promoted the advancement of scientific research in oil & gas exploration and production. The book is chiefly intended for industry experts, professors, researchers, senior engineers, and enterprise managers.
Genre | : Technology & Engineering |
Author | : Jia'en Lin |
Publisher | : Springer Nature |
Release | : 2020-07-11 |
File | : 3907 Pages |
ISBN-13 | : 9789811524851 |
Genre | : Science |
Author | : Wenhui Song |
Publisher | : Frontiers Media SA |
Release | : 2022-08-12 |
File | : 155 Pages |
ISBN-13 | : 9782889767755 |
Unconventional resources with commercial interest in the world mainly include heavy oils, shales, coalbed methane, and tight gas sands. The production and development of these resources has changed the global energy supply pattern. Quantitative interpretation of geophysical data in the exploration, well-logging, and engineering development of unconventional resources requires a comprehensive understanding of physical properties of rocks and their relationships. The research of rock physics provides an interdisciplinary treatment of physical properties, whether related to geological, geophysical, or geomechanical methodologies. The development of new rock physics methods is essential when integrating core, well-log, seismic data to improve the accuracy of formation evaluation and reservoir characterization. The composition, internal structure, and thermodynamic environment of reservoir rocks are complex and vary with different regions. This becomes particularly evident for unconventional reservoirs with strong macro- and micro-scopic heterogeneities. The diversity of exploration targets and complexity of reservoir characteristics pose great challenges to the applicability of existing rock physics experiments and theories. There are potential risks in directly using existing empirical relations and physical models to guide geophysical interpretation since spurious results may occur. Therefore, it is imperative to explore more applicable rock physics methods according to the petrophysical nature of actual reservoirs.
Genre | : Science |
Author | : Qiaomu Qi |
Publisher | : Frontiers Media SA |
Release | : 2024-10-07 |
File | : 177 Pages |
ISBN-13 | : 9782832555262 |
This Research Topic is Volume III of a series. The previous volume can be found here: Spatial Modelling and Failure Analysis of Natural and Engineering Disasters through Data-based Methods - Volume II and Spatial Modelling and Failure Analysis of Natural and Engineering Disasters through Data-based Methods Natural and engineering disasters, which include landslides, rock fall, rainstorm, dam failure, floods, earthquakes, road and building disasters and wildfires, appear as results of the progressive or extreme evolution of climatic, tectonic and geomorphological processes and human engineering activities. It is significant to explore the failure mechanism and carry out spatial modeling of these engineering and natural disasters due to their serious harm to the safety of people's lives and property. The data-based methods, including advanced and successful remote sensing, geographic information systems, machine learning and numerical simulation techniques methods, are promising tools to analyze these complex disasters. Machine Learning models such as neurofuzzy logic, decision tree, artificial neural network, deep learning and evolutionary algorithms are characterized by their abilities to produce knowledge and discover hidden and unknown patterns and trends from large databases, whereas remote sensing and Geographic Information Systems appear as significant technology equipped with tools for data manipulation and advanced mathematical modeling. What is more, the numerical simulation can also be acknowledged as advanced technologies for discovering hidden failure mechanism of disasters. The main objective of this Research Topic is to provide a scientific forum for advancing the successful implementation of Machine Learning (ML) and numerical simulation techniques in operation rules, failure mechanism, spatial and time series prediction, susceptibility mapping, hazard assessment, vulnerability modeling, risk assessment and early warning of complex natural and engineering disasters.
Genre | : Science |
Author | : Faming Huang |
Publisher | : Frontiers Media SA |
Release | : 2024-09-12 |
File | : 243 Pages |
ISBN-13 | : 9782832554234 |
Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.
Genre | : Technology & Engineering |
Author | : Xin-rong Zhang |
Publisher | : John Wiley & Sons |
Release | : 2023-01-05 |
File | : 291 Pages |
ISBN-13 | : 9781119742340 |