Geometry Of Homogeneous Bounded Domains

eBook Download

BOOK EXCERPT:

S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Kähler manifolds.- S.G. Greenfield: Extendibility properties of real submanifolds of Cn.- W. Kaup: Holomorphische Abbildungen in Hyperbolische Räume.- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains.- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symétriques.- S. Murakami: Plongements holomorphes de domaines symétriques.- E.M. Stein: The analogues of Fatous’s theorem and estimates for maximal functions.

Product Details :

Genre : Mathematics
Author : E. Vesentini
Publisher : Springer Science & Business Media
Release : 2011-06-08
File : 297 Pages
ISBN-13 : 9783642110603


Theory Of Complex Homogeneous Bounded Domains

eBook Download

BOOK EXCERPT:

This book is the first to systematically explore the classification and function theory of complex homogeneous bounded domains. The Siegel domains are discussed in detail, and proofs are presented. Using the normal Siegel domains to realize the homogeneous bounded domains, we can obtain more property of the geometry and the function theory on homogeneous bounded domains.

Product Details :

Genre : Mathematics
Author : Yichao Xu
Publisher : Springer Science & Business Media
Release : 2007-12-31
File : 438 Pages
ISBN-13 : 9781402021336


Homogeneous Bounded Domains And Siegel Domains

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Mathematics
Author : S. Kaneyuki
Publisher : Springer
Release : 2006-11-15
File : 95 Pages
ISBN-13 : 9783540370284


Geometry Of Homogeneous Bounded Domains

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Functions of complex variables
Author : Centro internazionale matematico estivo
Publisher :
Release : 1968
File : 322 Pages
ISBN-13 : UOM:39015017418248


Analysis And Geometry On Complex Homogeneous Domains

eBook Download

BOOK EXCERPT:

A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.

Product Details :

Genre : Mathematics
Author : Jacques Faraut
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 539 Pages
ISBN-13 : 9781461213666


Progress In Information Geometry

eBook Download

BOOK EXCERPT:

This book focuses on information-geometric manifolds of structured data and models and related applied mathematics. It features new and fruitful interactions between several branches of science: Advanced Signal/Image/Video Processing, Complex Data Modeling and Analysis, Statistics on Manifolds, Topology/Machine/Deep Learning and Artificial Intelligence. The selection of applications makes the book a substantial information source, not only for academic scientist but it is also highly relevant for industry. The book project was initiated following discussions at the international conference GSI’2019 – Geometric Science of Information that was held at ENAC, Toulouse (France).

Product Details :

Genre : Science
Author : Frank Nielsen
Publisher : Springer Nature
Release : 2021-03-14
File : 274 Pages
ISBN-13 : 9783030654597


Contemporary Geometry

eBook Download

BOOK EXCERPT:

Early one morning in April of 1987, the Chinese mathematician J. -Q. Zhong died unexpectedly of a heart attack in New York. He was then near the end of a one-year visit in the United States. When news of his death reached his Chinese-American friends, it was immediately decided by one and all that something should be done to preserve his memory. The present volume is an outgrowth of this sentiment. His friends in China have also established a Zhong Jia-Qing Memorial Fund, which has since twice awarded the Zhong Jia-Qing prizes for Chinese mathematics graduate students. It is hoped that at least part of the reasons for the esteem and affection in which he was held by all who knew him would come through in the succeeding pages of this volume. The three survey chapters by Li and Treibergs, Lu, and Siu (Chapters 1-3) all center around the areas of mathematics in which Zhong made noteworthy contributions. In addition to putting Zhong's mathematical contributions in perspective, these articles should be useful also to a large segment of the mathematical community; together they give a coherent picture of a sizable portion of contemporary geometry. The survey of Lu differs from the other two in that it gives a firsthand account of the work done in the People's Republic of China in several complex variables in the last four decades.

Product Details :

Genre : Mathematics
Author : Hung-Hsi Wu
Publisher : Springer Science & Business Media
Release : 2013-06-29
File : 483 Pages
ISBN-13 : 9781468479508


Joseph Fourier 250th Birthday

eBook Download

BOOK EXCERPT:

For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.

Product Details :

Genre : Science
Author : Frédéric Barbaresco
Publisher : MDPI
Release : 2019-03-28
File : 260 Pages
ISBN-13 : 9783038977469


Topics In Geometry

eBook Download

BOOK EXCERPT:

This collection of articles serves to commemorate the legacy of Joseph D'Atri, who passed away on April 29, 1993, a few days after his 55th birthday. Joe D' Atri is credited with several fundamental discoveries in ge ometry. In the beginning of his mathematical career, Joe was interested in the generalization of symmetrical spaces in the E. Cart an sense. Symmetric spaces, differentiated from other homogeneous manifolds by their geomet rical richness, allows the development of a deep analysis. Geometers have been constantly interested and challenged by the problem of extending the class of symmetric spaces so as to preserve their geometrical and analytical abundance. The name of D'Atri is tied to one of the most successful gen eralizations: Riemann manifolds in which (local) geodesic symmetries are volume-preserving (up to sign). In time, it turned out that the majority of interesting generalizations of symmetrical spaces are D'Atri spaces: natu ral reductive homogeneous spaces, Riemann manifolds whose geodesics are orbits of one-parameter subgroups, etc. The central place in D'Atri's research is occupied by homogeneous bounded domains in en, which are not symmetric. Such domains were discovered by Piatetskii-Shapiro in 1959, and given Joe's strong interest in the generalization of symmetric spaces, it was very natural for him to direct his research along this path.

Product Details :

Genre : Mathematics
Author : Simon Gindikin
Publisher : Springer Science & Business Media
Release : 1996-06-27
File : 396 Pages
ISBN-13 : 0817638288


The Geometry Of Hessian Structures

eBook Download

BOOK EXCERPT:

The geometry of Hessian structures is a fascinating emerging field of research. It is in particular a very close relative of K„hlerian geometry, and connected with many important pure mathematical branches such as affine differential geometry, homogeneous spaces and cohomology. The theory also finds deep relation to information geometry in applied mathematics. This systematic introduction to the subject first develops the fundamentals of Hessian structures on the basis of a certain pair of a flat connection and a Riemannian metric, and then describes these related fields as applications of the theory.

Product Details :

Genre : Mathematics
Author : Hirohiko Shima
Publisher : World Scientific
Release : 2007
File : 261 Pages
ISBN-13 : 9789812700315