WELCOME TO THE LIBRARY!!!
What are you looking for Book "Geometry Of Quantum Theory" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
In modern mathematical physics, classical together with quantum, geometrical and functional analytic methods are used simultaneously. Non-commutative geometry in particular is becoming a useful tool in quantum field theories. This book, aimed at advanced students and researchers, provides an introduction to these ideas. Researchers will benefit particularly from the extensive survey articles on models relating to quantum gravity, string theory, and non-commutative geometry, as well as Connes' approach to the standard model.
Product Details :
Genre |
: Science |
Author |
: H. Gausterer |
Publisher |
: Springer |
Release |
: 2008-01-11 |
File |
: 413 Pages |
ISBN-13 |
: 9783540465522 |
eBook Download
BOOK EXCERPT:
Available for the first time in soft cover, this book is a classic on the foundations of quantum theory. It examines the subject from a point of view that goes back to Heisenberg and Dirac and whose definitive mathematical formulation is due to von Neumann. This view leads most naturally to the fundamental questions that are at the basis of all attempts to understand the world of atomic and subatomic particles.
Product Details :
Genre |
: Science |
Author |
: V.S. Varadarajan |
Publisher |
: Springer Science & Business Media |
Release |
: 2007-12-03 |
File |
: 426 Pages |
ISBN-13 |
: 9780387493862 |
eBook Download
BOOK EXCERPT:
In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry's geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.
Product Details :
Genre |
: Science |
Author |
: Luigi Mangiarotti |
Publisher |
: World Scientific |
Release |
: 2005-01-27 |
File |
: 715 Pages |
ISBN-13 |
: 9789814481144 |
eBook Download
BOOK EXCERPT:
This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap.
Product Details :
Genre |
: Science |
Author |
: P. Bandyopadhyay |
Publisher |
: Springer Science & Business Media |
Release |
: 2013-03-09 |
File |
: 225 Pages |
ISBN-13 |
: 9789401716970 |
eBook Download
BOOK EXCERPT:
This volume of the CRM Conference Series is based on a carefully refereed selection of contributions presented at the "11th International Symposium on Quantum Theory and Symmetries", held in Montreal, Canada from July 1-5, 2019. The main objective of the meeting was to share and make accessible new research and recent results in several branches of Theoretical and Mathematical Physics, including Algebraic Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability, Non-perturbative Quantum Field Theory, Particle Physics, Quantum Computing and Quantum Information Theory, and String/ADS-CFT. There was also a special session in honour of Decio Levi. The volume is divided into sections corresponding to the sessions held during the symposium, allowing the reader to appreciate both the homogeneity and the diversity of mathematical tools that have been applied in these subject areas. Several of the plenary speakers, who are internationally recognized experts in their fields, have contributed reviews of the main topics to complement the original contributions. .
Product Details :
Genre |
: Electronic books |
Author |
: M. B. Paranjape |
Publisher |
: Springer Nature |
Release |
: 2021 |
File |
: 670 Pages |
ISBN-13 |
: 9783030557775 |
eBook Download
BOOK EXCERPT:
The author does not want a book description on the back cover.
Product Details :
Genre |
: Quantum field theory |
Author |
: R. Mirman |
Publisher |
: iUniverse |
Release |
: 2004-12 |
File |
: 341 Pages |
ISBN-13 |
: 9780595336906 |
eBook Download
BOOK EXCERPT:
This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.
Product Details :
Genre |
: Science |
Author |
: Dmitri Fursaev |
Publisher |
: Springer Science & Business Media |
Release |
: 2011-06-25 |
File |
: 294 Pages |
ISBN-13 |
: 9789400702059 |
eBook Download
BOOK EXCERPT:
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Product Details :
Genre |
: Mathematics |
Author |
: Alain Connes |
Publisher |
: American Mathematical Soc. |
Release |
: 2019-03-13 |
File |
: 810 Pages |
ISBN-13 |
: 9781470450458 |
eBook Download
BOOK EXCERPT:
This volume contains intense studies on Quantum Groups, Knot Theory, Statistical Mechanics, Conformal Field Theory, Differential Geometry and Differential Equation Methods and so on. It has contributions by renowned experts and covers most of the recent developments in these fields.
Product Details :
Genre |
: |
Author |
: Chen Ning Yang |
Publisher |
: World Scientific |
Release |
: 1993-07-31 |
File |
: 626 Pages |
ISBN-13 |
: 9789814553773 |
eBook Download
BOOK EXCERPT:
This book provides a comprehensive account of a modern generalisation of differential geometry in which coordinates need not commute. This requires a reinvention of differential geometry that refers only to the coordinate algebra, now possibly noncommutative, rather than to actual points. Such a theory is needed for the geometry of Hopf algebras or quantum groups, which provide key examples, as well as in physics to model quantum gravity effects in the form of quantum spacetime. The mathematical formalism can be applied to any algebra and includes graph geometry and a Lie theory of finite groups. Even the algebra of 2 x 2 matrices turns out to admit a rich moduli of quantum Riemannian geometries. The approach taken is a `bottom up’ one in which the different layers of geometry are built up in succession, starting from differential forms and proceeding up to the notion of a quantum `Levi-Civita’ bimodule connection, geometric Laplacians and, in some cases, Dirac operators. The book also covers elements of Connes’ approach to the subject coming from cyclic cohomology and spectral triples. Other topics include various other cohomology theories, holomorphic structures and noncommutative D-modules. A unique feature of the book is its constructive approach and its wealth of examples drawn from a large body of literature in mathematical physics, now put on a firm algebraic footing. Including exercises with solutions, it can be used as a textbook for advanced courses as well as a reference for researchers.
Product Details :
Genre |
: Science |
Author |
: Edwin J. Beggs |
Publisher |
: Springer Nature |
Release |
: 2020-01-31 |
File |
: 826 Pages |
ISBN-13 |
: 9783030302948 |