WELCOME TO THE LIBRARY!!!
What are you looking for Book "Gr Bner Bases And Applications" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Comprehensive account of theory and applications of Gröbner bases, co-edited by the subject's inventor.
Product Details :
Genre |
: Mathematics |
Author |
: Bruno Buchberger |
Publisher |
: Cambridge University Press |
Release |
: 1998-02-26 |
File |
: 566 Pages |
ISBN-13 |
: 0521632986 |
eBook Download
BOOK EXCERPT:
A very carefully crafted introduction to the theory and some of the applications of Grobner bases ... contains a wealth of illustrative examples and a wide variety of useful exercises, the discussion is everywhere well-motivated, and further developments and important issues are well sign-posted ... has many solid virtues and is an ideal text for beginners in the subject ... certainly an excellent text. --Bulletin of the London Mathematical Society As the primary tool for doing explicit computations in polynomial rings in many variables, Grobner bases are an important component of all computer algebra systems. They are also important in computational commutative algebra and algebraic geometry. This book provides a leisurely and fairly comprehensive introduction to Grobner bases and their applications. Adams and Loustaunau cover the following topics: the theory and construction of Grobner bases for polynomials with coefficients in a field, applications of Grobner bases to computational problems involving rings of polynomials in many variables, a method for computing syzygy modules and Grobner bases in modules, and the theory of Grobner bases for polynomials with coefficients in rings. With over 120 worked-out examples and 200 exercises, this book is aimed at advanced undergraduate and graduate students. It would be suitable as a supplement to a course in commutative algebra or as a textbook for a course in computer algebra or computational commutative algebra. This book would also be appropriate for students of computer science and engineering who have some acquaintance with modern algebra.
Product Details :
Genre |
: Mathematics |
Author |
: William W. Adams and Philippe Loustaunau |
Publisher |
: American Mathematical Soc. |
Release |
: 1994-07-21 |
File |
: 308 Pages |
ISBN-13 |
: 0821872168 |
eBook Download
BOOK EXCERPT:
A very carefully crafted introduction to the theory and some of the applications of Gröbner bases … contains a wealth of illustrative examples and a wide variety of useful exercises, the discussion is everywhere well-motivated, and further developments and important issues are well sign-posted … has many solid virtues and is an ideal text for beginners in the subject … certainly an excellent text. —Bulletin of the London Mathematical Society As the primary tool for doing explicit computations in polynomial rings in many variables, Gröbner bases are an important component of all computer algebra systems. They are also important in computational commutative algebra and algebraic geometry. This book provides a leisurely and fairly comprehensive introduction to Gröbner bases and their applications. Adams and Loustaunau cover the following topics: the theory and construction of Gröbner bases for polynomials with coefficients in a field, applications of Gröbner bases to computational problems involving rings of polynomials in many variables, a method for computing syzygy modules and Gröbner bases in modules, and the theory of Gröbner bases for polynomials with coefficients in rings. With over 120 worked-out examples and 200 exercises, this book is aimed at advanced undergraduate and graduate students. It would be suitable as a supplement to a course in commutative algebra or as a textbook for a course in computer algebra or computational commutative algebra. This book would also be appropriate for students of computer science and engineering who have some acquaintance with modern algebra.
Product Details :
Genre |
: Mathematics |
Author |
: William W. Adams |
Publisher |
: American Mathematical Society |
Release |
: 2022-04-25 |
File |
: 289 Pages |
ISBN-13 |
: 9781470469818 |
eBook Download
BOOK EXCERPT:
In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.
Product Details :
Genre |
: Mathematics |
Author |
: Teo Mora |
Publisher |
: Cambridge University Press |
Release |
: 2016-04-01 |
File |
: 833 Pages |
ISBN-13 |
: 9781316381380 |
eBook Download
BOOK EXCERPT:
This self-contained monograph is the first to feature the intersection of the structure theory of noncommutative associative algebras and the algorithmic aspect of Groebner basis theory. A double filtered-graded transfer of data in using noncommutative Groebner bases leads to effective exploitation of the solutions to several structural-computational problems, e.g., an algorithmic recognition of quadric solvable polynomial algebras, computation of GK-dimension and multiplicity for modules, and elimination of variables in noncommutative setting. All topics included deal with algebras of (q-)differential operators as well as some other operator algebras, enveloping algebras of Lie algebras, typical quantum algebras, and many of their deformations.
Product Details :
Genre |
: Mathematics |
Author |
: Huishi Li |
Publisher |
: Springer |
Release |
: 2004-10-19 |
File |
: 205 Pages |
ISBN-13 |
: 9783540457657 |
eBook Download
BOOK EXCERPT:
This book introduces readers to key ideas and applications of computational algebraic geometry. Beginning with the discovery of Gröbner bases and fueled by the advent of modern computers and the rediscovery of resultants, computational algebraic geometry has grown rapidly in importance. The fact that "crunching equations" is now as easy as "crunching numbers" has had a profound impact in recent years. At the same time, the mathematics used in computational algebraic geometry is unusually elegant and accessible, which makes the subject easy to learn and easy to apply. This book begins with an introduction to Gröbner bases and resultants, then discusses some of the more recent methods for solving systems of polynomial equations. A sampler of possible applications follows, including computer-aided geometric design, complex information systems, integer programming, and algebraic coding theory. The lectures in this book assume no previous acquaintance with the material.
Product Details :
Genre |
: Mathematics |
Author |
: David A. Cox |
Publisher |
: American Mathematical Soc. |
Release |
: 1998 |
File |
: 188 Pages |
ISBN-13 |
: 9780821807507 |
eBook Download
BOOK EXCERPT:
This volume contains survey and original articles presenting the state of the art on the application of Gröbner bases in control theory and signal processing. The contributions are based on talks delivered at the Special Semester on Gröbner Bases and Related Methods at the Johann Radon Institute of Computational and Applied Mathematics (RICAM), Linz, Austria, in May 2006.
Product Details :
Genre |
: Mathematics |
Author |
: Hyungju Park |
Publisher |
: Walter de Gruyter |
Release |
: 2011-12-22 |
File |
: 261 Pages |
ISBN-13 |
: 9783110909746 |
eBook Download
BOOK EXCERPT:
Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. Nowadays, it is hard to find an electronic device without some code inside. Gröbner bases have emerged as the main tool in computational algebra, permitting numerous applications, both in theoretical contexts and in practical situations. This book is the first book ever giving a comprehensive overview on the application of commutative algebra to coding theory and cryptography. For example, all important properties of algebraic/geometric coding systems (including encoding, construction, decoding, list decoding) are individually analysed, reporting all significant approaches appeared in the literature. Also, stream ciphers, PK cryptography, symmetric cryptography and Polly Cracker systems deserve each a separate chapter, where all the relevant literature is reported and compared. While many short notes hint at new exciting directions, the reader will find that all chapters fit nicely within a unified notation.
Product Details :
Genre |
: Mathematics |
Author |
: Massimiliano Sala |
Publisher |
: Springer Science & Business Media |
Release |
: 2009-05-28 |
File |
: 428 Pages |
ISBN-13 |
: 9783540938064 |
eBook Download
BOOK EXCERPT:
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Gröbner bases) and geometry (via quiver theory). Gröbner bases serve as effective models for computation in algebras of various types. Although the theory of Gröbner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced – with big impact – in the 1990s. Divided into two parts, the book first discusses the theory of Gröbner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Gröbner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
Product Details :
Genre |
: Mathematics |
Author |
: Kenji Iohara |
Publisher |
: Springer Nature |
Release |
: 2020-02-20 |
File |
: 375 Pages |
ISBN-13 |
: 9783030264543 |
eBook Download
BOOK EXCERPT:
The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels. This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no special knowledge to understand those basic points. Starting from the introductory performance of the Gröbner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Gröbner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Gröbner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Gröbner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Gröbner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems.
Product Details :
Genre |
: Mathematics |
Author |
: Takayuki Hibi |
Publisher |
: Springer Science & Business Media |
Release |
: 2014-01-07 |
File |
: 488 Pages |
ISBN-13 |
: 9784431545743 |