WELCOME TO THE LIBRARY!!!
What are you looking for Book "Hands On Computer Vision With Julia" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Explore the various packages in Julia that support image processing and build neural networks for video processing and object tracking. Key Features Build a full-fledged image processing application using JuliaImages Perform basic to advanced image and video stream processing with Julia's APIs Understand and optimize various features of OpenCV with easy examples Book Description Hands-On Computer Vision with Julia is a thorough guide for developers who want to get started with building computer vision applications using Julia. Julia is well suited to image processing because it’s easy to use and lets you write easy-to-compile and efficient machine code. . This book begins by introducing you to Julia's image processing libraries such as Images.jl and ImageCore.jl. You’ll get to grips with analyzing and transforming images using JuliaImages; some of the techniques discussed include enhancing and adjusting images. As you make your way through the chapters, you’ll learn how to classify images, cluster them, and apply neural networks to solve computer vision problems. In the concluding chapters, you will explore OpenCV applications to perform real-time computer vision analysis, for example, face detection and object tracking. You will also understand Julia's interaction with Tesseract to perform optical character recognition and build an application that brings together all the techniques we introduced previously to consolidate the concepts learned. By end of the book, you will have understood how to utilize various Julia packages and a few open source libraries such as Tesseract and OpenCV to solve computer vision problems with ease. What you will learn Analyze image metadata and identify critical data using JuliaImages Apply filters and improve image quality and color schemes Extract 2D features for image comparison using JuliaFeatures Cluster and classify images with KNN/SVM machine learning algorithms Recognize text in an image using the Tesseract library Use OpenCV to recognize specific objects or faces in images and videos Build neural network and classify images with MXNet Who this book is for Hands-On Computer Vision with Julia is for Julia developers who are interested in learning how to perform image processing and want to explore the field of computer vision. Basic knowledge of Julia will help you understand the concepts more effectively.
Product Details :
Genre |
: Computers |
Author |
: Dmitrijs Cudihins |
Publisher |
: Packt Publishing Ltd |
Release |
: 2018-06-29 |
File |
: 192 Pages |
ISBN-13 |
: 9781788999236 |
eBook Download
BOOK EXCERPT:
Enter the exciting world of Julia, a high-performance language for technical computing Key FeaturesLeverage Julia's high speed and efficiency for your applicationsWork with Julia in a multi-core, distributed, and networked environmentApply Julia to tackle problems concurrently and in a distributed environmentBook Description The release of Julia 1.0 is now ready to change the technical world by combining the high productivity and ease of use of Python and R with the lightning-fast speed of C++. Julia 1.0 programming gives you a head start in tackling your numerical and data problems. You will begin by learning how to set up a running Julia platform, before exploring its various built-in types. With the help of practical examples, this book walks you through two important collection types: arrays and matrices. In addition to this, you will be taken through how type conversions and promotions work. In the course of the book, you will be introduced to the homo-iconicity and metaprogramming concepts in Julia. You will understand how Julia provides different ways to interact with an operating system, as well as other languages, and then you'll discover what macros are. Once you have grasped the basics, you’ll study what makes Julia suitable for numerical and scientific computing, and learn about the features provided by Julia. By the end of this book, you will also have learned how to run external programs. This book covers all you need to know about Julia in order to leverage its high speed and efficiency for your applications. What you will learnSet up your Julia environment to achieve high productivityCreate your own types to extend the built-in type systemVisualize your data in Julia with plotting packagesExplore the use of built-in macros for testing and debugging, among other usesApply Julia to tackle problems concurrentlyIntegrate Julia with other languages such as C, Python, and MATLABWho this book is for Julia 1.0 Programming is for you if you are a statistician or data scientist who wants a crash course in the Julia programming language while building big data applications. A basic knowledge of mathematics is needed to understand the various methods that are used or created during the course of the book to exploit the capabilities that Julia is designed with.
Product Details :
Genre |
: Computers |
Author |
: Ivo Balbaert |
Publisher |
: Packt Publishing Ltd |
Release |
: 2018-09-24 |
File |
: 184 Pages |
ISBN-13 |
: 9781788990059 |
eBook Download
BOOK EXCERPT:
Discover the new features and widely used packages in Julia to solve complex computational problems in your statistical applications. Key FeaturesAddress the core problems of programming in Julia with the most popular packages for common tasksTackle issues while working with Databases and Parallel data processing with JuliaExplore advanced features such as metaprogramming, functional programming, and user defined typesBook Description Julia, with its dynamic nature and high-performance, provides comparatively minimal time for the development of computational models with easy-to-maintain computational code. This book will be your solution-based guide as it will take you through different programming aspects with Julia. Starting with the new features of Julia 1.0, each recipe addresses a specific problem, providing a solution and explaining how it works. You will work with the powerful Julia tools and data structures along with the most popular Julia packages. You will learn to create vectors, handle variables, and work with functions. You will be introduced to various recipes for numerical computing, distributed computing, and achieving high performance. You will see how to optimize data science programs with parallel computing and memory allocation. We will look into more advanced concepts such as metaprogramming and functional programming. Finally, you will learn how to tackle issues while working with databases and data processing, and will learn about on data science problems, data modeling, data analysis, data manipulation, parallel processing, and cloud computing with Julia. By the end of the book, you will have acquired the skills to work more effectively with your data What you will learnBoost your code’s performance using Julia’s unique featuresOrganize data in to fundamental types of collections: arrays and dictionariesOrganize data science processes within Julia and solve related problemsScale Julia computations with cloud computingWrite data to IO streams with Julia and handle web transferDefine your own immutable and mutable typesSpeed up the development process using metaprogrammingWho this book is for This book is for developers who would like to enhance their Julia programming skills and would like to get some quick solutions to their common programming problems. Basic Julia programming knowledge is assumed.
Product Details :
Genre |
: Computers |
Author |
: Bogumił Kamiński |
Publisher |
: Packt Publishing Ltd |
Release |
: 2018-11-29 |
File |
: 451 Pages |
ISBN-13 |
: 9781788998826 |
eBook Download
BOOK EXCERPT:
Learn dynamic programming with Julia to build apps for data analysis, visualization, machine learning, and the web Key FeaturesLeverage Julia's high speed and efficiency to build fast, efficient applicationsPerform supervised and unsupervised machine learning and time series analysisTackle problems concurrently and in a distributed environmentBook Description Julia offers the high productivity and ease of use of Python and R with the lightning-fast speed of C++. There’s never been a better time to learn this language, thanks to its large-scale adoption across a wide range of domains, including fintech, biotech and artificial intelligence (AI). You will begin by learning how to set up a running Julia platform, before exploring its various built-in types. This Learning Path walks you through two important collection types: arrays and matrices. You’ll be taken through how type conversions and promotions work, and in further chapters you'll study how Julia interacts with operating systems and other languages. You’ll also learn about the use of macros, what makes Julia suitable for numerical and scientific computing, and how to run external programs. Once you have grasped the basics, this Learning Path goes on to how to analyze the Iris dataset using DataFrames. While building a web scraper and a web app, you’ll explore the use of functions, methods, and multiple dispatches. In the final chapters, you'll delve into machine learning, where you'll build a book recommender system. By the end of this Learning Path, you’ll be well versed with Julia and have the skills you need to leverage its high speed and efficiency for your applications. This Learning Path includes content from the following Packt products: Julia 1.0 Programming - Second Edition by Ivo BalbaertJulia Programming Projects by Adrian SalceanuWhat you will learnCreate your own types to extend the built-in type systemVisualize your data in Julia with plotting packagesExplore the use of built-in macros for testing and debuggingIntegrate Julia with other languages such as C, Python, and MATLABAnalyze and manipulate datasets using Julia and DataFramesDevelop and run a web app using Julia and the HTTP packageBuild a recommendation system using supervised machine learningWho this book is for If you are a statistician or data scientist who wants a quick course in the Julia programming language while building big data applications, this Learning Path is for you. Basic knowledge of mathematics and programming is a must.
Product Details :
Genre |
: Computers |
Author |
: Ivo Balbaert |
Publisher |
: Packt Publishing Ltd |
Release |
: 2019-05-20 |
File |
: 455 Pages |
ISBN-13 |
: 9781838824679 |
eBook Download
BOOK EXCERPT:
Build production-ready machine learning and NLP systems using functional programming, development platforms, and cloud deployment. KEY FEATURES ● In-depth explanation and code samples highlighting the features of the Julia language. ● Extensive coverage of the Julia development ecosystem, package management, DevOps environment integration, and performance management tools. ● Exposure to the most important Julia packages that aid in Data and Text Analytics and Deep Learning. DESCRIPTION The Julia Programming language enables data scientists and programmers to create prototypes without sacrificing performance. Nonetheless, skeptics question its readiness for production deployments as a new platform with a 1.0 release in 2018. This book removes these doubts and offers a comprehensive glimpse at the language's use throughout developing and deploying production-ready applications. The first part of the book teaches experienced programmers and scientists about the Julia language features in great detail. The second part consists of gaining hands-on experience with the development environment, debugging, programming guidelines, package management, and cloud deployment strategies. In the final section, readers are introduced to a variety of third-party packages available in the Julia ecosystem for Data Processing, Text Analytics, and developing Deep Learning models. This book provides an extensive overview of the programming language and broadens understanding of the Julia ecosystem. As a result, it assists programmers, scientists, and information architects in selecting Julia for their next production deployments. WHAT YOU WILL LEARN ● Get to know the complete fundamentals of Julia programming. ● Explore Julia development frameworks and how to work with them. ● Dig deeper into the concepts and applications of functional programming. ● Uncover the Julia infrastructure for development, testing, and deployment. ● Learn to practice Julia libraries and the Julia package ecosystem. ● Processing Data, Deep Learning, and Natural Language Processing with Julia. WHO THIS BOOK IS FOR This book is for Data Scientists and application developers who want to learn about Julia application development. No prior Julia knowledge is required but knowing the basics of programming helps understand the objectives of this book. TABLE OF CONTENTS 1. Getting Started 2. Data Types 3. Conditions, Control Flow, and Iterations 4. Functions and Methods 5. Collections 6. Arrays 7. Strings 8. Metaprogramming 9. Standard Libraries Module 2. The Development Environment 10. Programming Guidelines in Julia 11. Performance Management 12. IDE and Debugging 13. Package Management 14. Deployment Module 3. Packages in Julia 15. Data Transformations 16. Text Analytics 17. Deep Learning
Product Details :
Genre |
: Computers |
Author |
: Sambit Kumar Dash |
Publisher |
: BPB Publications |
Release |
: 2021-10-21 |
File |
: 408 Pages |
ISBN-13 |
: 9789391030889 |
eBook Download
BOOK EXCERPT:
This book constitutes the refereed proceedings of the 5th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2015, held in Lège-Cap Ferret, France, in May 2015. The 56 revised full papers presented were carefully reviewed and selected from 83 submissions. The papers are organized in the following topical sections: scale space and partial differential equation methods; denoising, restoration and reconstruction, segmentation and partitioning; flow, motion and registration; photography, texture and color processing; shape, surface and 3D problems; and optimization theory and methods in imaging.
Product Details :
Genre |
: Computers |
Author |
: Jean-François Aujol |
Publisher |
: Springer |
Release |
: 2015-04-27 |
File |
: 721 Pages |
ISBN-13 |
: 9783319184616 |
eBook Download
BOOK EXCERPT:
Unleash Julia’s power: Code Your Data Stories, Shape Machine Intelligence! KEY FEATURES ● Comprehensive Learning Journey from fundamentals of Julia ML to advanced techniques. ● Immersive practical approach with real-world examples, exercises, and scenarios, ensuring immediate application of acquired knowledge. ● Delve into the unique features of Julia and unlock its true potential to excel in modern ML applications. DESCRIPTION This book takes you through a step-by-step learning journey, starting with the essentials of Julia's syntax, variables, and functions. You'll unlock the power of efficient data handling by leveraging Julia arrays and DataFrames.jl for insightful analysis. Develop expertise in both basic and advanced statistical models, providing a robust toolkit for deriving meaningful data-driven insights. The journey continues with machine learning proficiency, where you'll implement algorithms confidently using MLJ.jl and MLBase.jl, paving the way for advanced data-driven solutions. Explore the realm of Bayesian inference skills through practical applications using Turing.jl, enhancing your ability to extract valuable insights. The book also introduces crucial Julia packages such as Plots.jl for visualizing data and results. The handbook culminates in optimizing workflows with Julia's parallel and distributed computing capabilities, ensuring efficient and scalable data processing using Distributions.jl, Distributed.jl and SharedArrays.jl. This comprehensive guide equips you with the knowledge and practical insights needed to excel in the dynamic field of data science and machine learning. WHAT WILL YOU LEARN ● Master Julia ML Basics to gain a deep understanding of Julia's syntax, variables, and functions. ● Efficient Data Handling with Julia arrays and DataFrames for streamlined and insightful analysis. ● Develop expertise in both basic and advanced statistical models for informed decision-making through Statistical Modeling. ● Achieve Machine Learning Proficiency by confidently implementing ML algorithms using MLJ.jl and MLBase.jl. ● Apply Bayesian Inference Skills with Turing.jl for advanced modeling techniques. ● Optimize workflows using Julia's Parallel Processing Capabilities and Distributed Computing for efficient and scalable data processing. WHO IS THIS BOOK FOR? This book is designed to be a comprehensive and accessible companion for anyone eager to excel in machine learning and data analysis using Julia. Whether you are a novice or an experienced practitioner, the knowledge and skills imparted within these pages will empower you to navigate the complexities of modern data science with Julia. TABLE OF CONTENTS 1. Julia In Data Science Arena 2. Getting Started with Julia 3. Features Assisting Scaling ML Projects 4. Data Structures in Julia 5. Working With Datasets In Julia 6. Basics of Statistics 7. Probability Data Distributions 8. Framing Data in Julia 9. Working on Data in DataFrames 10. Visualizing Data in Julia 11. Introducing Machine Learning in Julia 12. Data and Models 13. Bayesian Statistics and Modeling 14. Parallel Computation in Julia 15. Distributed Computation in Julia Index
Product Details :
Genre |
: Computers |
Author |
: Nabanita Dash |
Publisher |
: Orange Education Pvt Ltd |
Release |
: 2024-01-03 |
File |
: 552 Pages |
ISBN-13 |
: 9789391246860 |
eBook Download
BOOK EXCERPT:
The six-volume set comprising the LNCS volumes 11129-11134 constitutes the refereed proceedings of the workshops that took place in conjunction with the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.43 workshops from 74 workshops proposals were selected for inclusion in the proceedings. The workshop topics present a good orchestration of new trends and traditional issues, built bridges into neighboring fields, and discuss fundamental technologies and novel applications.
Product Details :
Genre |
: Computers |
Author |
: Laura Leal-Taixé |
Publisher |
: Springer |
Release |
: 2019-01-28 |
File |
: 737 Pages |
ISBN-13 |
: 9783030110123 |
eBook Download
BOOK EXCERPT:
The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually.
Product Details :
Genre |
: Computers |
Author |
: Hiroshi Ishikawa |
Publisher |
: Springer Nature |
Release |
: 2021-02-26 |
File |
: 755 Pages |
ISBN-13 |
: 9783030695255 |
eBook Download
BOOK EXCERPT:
The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.
Product Details :
Genre |
: Computers |
Author |
: David Fleet |
Publisher |
: Springer |
Release |
: 2014-08-14 |
File |
: 871 Pages |
ISBN-13 |
: 9783319105932 |