High Dimensionality In Statistics And Portfolio Optimization

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Konstantin Glombek
Publisher : BoD – Books on Demand
Release : 2012
File : 150 Pages
ISBN-13 : 9783844102130


Statistical Portfolio Estimation

eBook Download

BOOK EXCERPT:

The composition of portfolios is one of the most fundamental and important methods in financial engineering, used to control the risk of investments. This book provides a comprehensive overview of statistical inference for portfolios and their various applications. A variety of asset processes are introduced, including non-Gaussian stationary processes, nonlinear processes, non-stationary processes, and the book provides a framework for statistical inference using local asymptotic normality (LAN). The approach is generalized for portfolio estimation, so that many important problems can be covered. This book can primarily be used as a reference by researchers from statistics, mathematics, finance, econometrics, and genomics. It can also be used as a textbook by senior undergraduate and graduate students in these fields.

Product Details :

Genre : Mathematics
Author : Masanobu Taniguchi
Publisher : CRC Press
Release : 2017-09-01
File : 455 Pages
ISBN-13 : 9781351643627


Recent Advances In Theory And Methods For The Analysis Of High Dimensional And High Frequency Financial Data

eBook Download

BOOK EXCERPT:

Recently, considerable attention has been placed on the development and application of tools useful for the analysis of the high-dimensional and/or high-frequency datasets that now dominate the landscape. The purpose of this Special Issue is to collect both methodological and empirical papers that develop and utilize state-of-the-art econometric techniques for the analysis of such data.

Product Details :

Genre : Business & Economics
Author : Norman R. Swanson
Publisher : MDPI
Release : 2021-08-31
File : 196 Pages
ISBN-13 : 9783036508528


Modern Nonparametric Robust And Multivariate Methods

eBook Download

BOOK EXCERPT:

Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.

Product Details :

Genre : Mathematics
Author : Klaus Nordhausen
Publisher : Springer
Release : 2015-10-05
File : 513 Pages
ISBN-13 : 9783319224046


Statistical Models And Methods For Financial Markets

eBook Download

BOOK EXCERPT:

The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

Product Details :

Genre : Business & Economics
Author : Tze Leung Lai
Publisher : Springer Science & Business Media
Release : 2008-09-08
File : 363 Pages
ISBN-13 : 9780387778273


Financial Signal Processing And Machine Learning

eBook Download

BOOK EXCERPT:

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

Product Details :

Genre : Technology & Engineering
Author : Ali N. Akansu
Publisher : John Wiley & Sons
Release : 2016-04-20
File : 312 Pages
ISBN-13 : 9781118745649


Financial Data Analytics

eBook Download

BOOK EXCERPT:

​This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.

Product Details :

Genre : Business & Economics
Author : Sinem Derindere Köseoğlu
Publisher : Springer Nature
Release : 2022-04-25
File : 393 Pages
ISBN-13 : 9783030837990


Beyond The Algorithm

eBook Download

BOOK EXCERPT:

As artificial intelligence (AI) becomes more and more woven into our everyday lives—and underpins so much of the infrastructure we rely on—the ethical, security, and privacy implications require a critical approach that draws not simply on the programming and algorithmic foundations of the technology. Bringing together legal studies, philosophy, cybersecurity, and academic literature, Beyond the Algorithm examines these complex issues with a comprehensive, easy-to-understand analysis and overview. The book explores the ethical challenges that professionals—and, increasingly, users—are encountering as AI becomes not just a promise of the future, but a powerful tool of the present. An overview of the history and development of AI, from the earliest pioneers in machine learning to current applications and how it might shape the future Introduction to AI models and implementations, as well as examples of emerging AI trends Examination of vulnerabilities, including insight into potential real-world threats, and best practices for ensuring a safe AI deployment Discussion of how to balance accountability, privacy, and ethics with regulatory and legislative concerns with advancing AI technology A critical perspective on regulatory obligations, and repercussions, of AI with copyright protection, patent rights, and other intellectual property dilemmas An academic resource and guide for the evolving technical and intellectual challenges of AI Leading figures in the field bring to life the ethical issues associated with AI through in-depth analysis and case studies in this comprehensive examination.

Product Details :

Genre : Computers
Author : Omar Santos
Publisher : Addison-Wesley Professional
Release : 2024-01-30
File : 536 Pages
ISBN-13 : 9780138268398


Optimization And Control For Systems In The Big Data Era

eBook Download

BOOK EXCERPT:

This book focuses on optimal control and systems engineering in the big data era. It examines the scientific innovations in optimization, control and resilience management that can be applied to further success. In both business operations and engineering applications, there are huge amounts of data that can overwhelm computing resources of large-scale systems. This “big data” provides new opportunities to improve decision making and addresses risk for individuals as well in organizations. While utilizing data smartly can enhance decision making, how to use and incorporate data into the decision making framework remains a challenging topic. Ultimately the chapters in this book present new models and frameworks to help overcome this obstacle. Optimization and Control for Systems in the Big-Data Era: Theory and Applications is divided into five parts. Part I offers reviews on optimization and control theories, and Part II examines the optimization and control applications. Part III provides novel insights and new findings in the area of financial optimization analysis. The chapters in Part IV deal with operations analysis, covering flow-shop operations and quick response systems. The book concludes with final remarks and a look to the future of big data related optimization and control problems.

Product Details :

Genre : Business & Economics
Author : Tsan-Ming Choi
Publisher : Springer
Release : 2017-05-04
File : 281 Pages
ISBN-13 : 9783319535180


Parameter Estimation In Stochastic Volatility Models

eBook Download

BOOK EXCERPT:

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Product Details :

Genre : Mathematics
Author : Jaya P. N. Bishwal
Publisher : Springer Nature
Release : 2022-08-06
File : 634 Pages
ISBN-13 : 9783031038617