Igusa S P Adic Local Zeta Function And The Monodromy Conjecture For Non Degenerate Surface Singularities

eBook Download

BOOK EXCERPT:

In 2011 Lemahieu and Van Proeyen proved the Monodromy Conjecture for the local topological zeta function of a non-degenerate surface singularity. The authors start from their work and obtain the same result for Igusa's p-adic and the motivic zeta function. In the p-adic case, this is, for a polynomial f∈Z[x,y,z] satisfying f(0,0,0)=0 and non-degenerate with respect to its Newton polyhedron, we show that every pole of the local p-adic zeta function of f induces an eigenvalue of the local monodromy of f at some point of f−1(0)⊂C3 close to the origin. Essentially the entire paper is dedicated to proving that, for f as above, certain candidate poles of Igusa's p-adic zeta function of f, arising from so-called B1-facets of the Newton polyhedron of f, are actually not poles. This turns out to be much harder than in the topological setting. The combinatorial proof is preceded by a study of the integral points in three-dimensional fundamental parallelepipeds. Together with the work of Lemahieu and Van Proeyen, this main result leads to the Monodromy Conjecture for the p-adic and motivic zeta function of a non-degenerate surface singularity.

Product Details :

Genre : Mathematics
Author : Bart Bories
Publisher : American Mathematical Soc.
Release : 2016-06-21
File : 146 Pages
ISBN-13 : 9781470418410


Quasi Ordinary Power Series And Their Zeta Functions

eBook Download

BOOK EXCERPT:

The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.

Product Details :

Genre : Functions, Zeta
Author : Enrique Artal-Bartolo
Publisher : American Mathematical Soc.
Release : 2005-10-05
File : 100 Pages
ISBN-13 : 0821865633