WELCOME TO THE LIBRARY!!!
What are you looking for Book "Image Analysis Classification And Change Detection In Remote Sensing" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python, Third Edition introduces techniques used in the processing of remote sensing digital imagery. It emphasizes the development and implementation of statistically motivated, data-driven techniques. The author achieves this by tightly interweaving theory, algorithms, and computer codes. See What’s New in the Third Edition: Inclusion of extensive code in Python, with a cloud computing example New material on synthetic aperture radar (SAR) data analysis New illustrations in all chapters Extended theoretical development The material is self-contained and illustrated with many programming examples in IDL. The illustrations and applications in the text can be plugged in to the ENVI system in a completely transparent fashion and used immediately both for study and for processing of real imagery. The inclusion of Python-coded versions of the main image analysis algorithms discussed make it accessible to students and teachers without expensive ENVI/IDL licenses. Furthermore, Python platforms can take advantage of new cloud services that essentially provide unlimited computational power. The book covers both multispectral and polarimetric radar image analysis techniques in a way that makes both the differences and parallels clear and emphasizes the importance of choosing appropriate statistical methods. Each chapter concludes with exercises, some of which are small programming projects, intended to illustrate or justify the foregoing development, making this self-contained text ideal for self-study or classroom use.
Product Details :
Genre |
: Mathematics |
Author |
: Morton J. Canty |
Publisher |
: CRC Press |
Release |
: 2014-06-06 |
File |
: 575 Pages |
ISBN-13 |
: 9781466570375 |
eBook Download
BOOK EXCERPT:
Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for Python, Fourth Edition, is focused on the development and implementation of statistically motivated, data-driven techniques for digital image analysis of remotely sensed imagery and it features a tight interweaving of statistical and machine learning theory of algorithms with computer codes. It develops statistical methods for the analysis of optical/infrared and synthetic aperture radar (SAR) imagery, including wavelet transformations, kernel methods for nonlinear classification, as well as an introduction to deep learning in the context of feed forward neural networks. New in the Fourth Edition: An in-depth treatment of a recent sequential change detection algorithm for polarimetric SAR image time series. The accompanying software consists of Python (open source) versions of all of the main image analysis algorithms. Presents easy, platform-independent software installation methods (Docker containerization). Utilizes freely accessible imagery via the Google Earth Engine and provides many examples of cloud programming (Google Earth Engine API). Examines deep learning examples including TensorFlow and a sound introduction to neural networks, Based on the success and the reputation of the previous editions and compared to other textbooks in the market, Professor Canty’s fourth edition differs in the depth and sophistication of the material treated as well as in its consistent use of computer codes to illustrate the methods and algorithms discussed. It is self-contained and illustrated with many programming examples, all of which can be conveniently run in a web browser. Each chapter concludes with exercises complementing or extending the material in the text.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Morton John Canty |
Publisher |
: CRC Press |
Release |
: 2019-03-11 |
File |
: 445 Pages |
ISBN-13 |
: 9780429875342 |
eBook Download
BOOK EXCERPT:
Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for Python, Fourth Edition, is focused on the development and implementation of statistically motivated, data-driven techniques for digital image analysis of remotely sensed imagery and it features a tight interweaving of statistical and machine learning theory of algorithms with computer codes. It develops statistical methods for the analysis of optical/infrared and synthetic aperture radar (SAR) imagery, including wavelet transformations, kernel methods for nonlinear classification, as well as an introduction to deep learning in the context of feed forward neural networks. New in the Fourth Edition: An in-depth treatment of a recent sequential change detection algorithm for polarimetric SAR image time series. The accompanying software consists of Python (open source) versions of all of the main image analysis algorithms. Presents easy, platform-independent software installation methods (Docker containerization). Utilizes freely accessible imagery via the Google Earth Engine and provides many examples of cloud programming (Google Earth Engine API). Examines deep learning examples including TensorFlow and a sound introduction to neural networks, Based on the success and the reputation of the previous editions and compared to other textbooks in the market, Professor Canty’s fourth edition differs in the depth and sophistication of the material treated as well as in its consistent use of computer codes to illustrate the methods and algorithms discussed. It is self-contained and illustrated with many programming examples, all of which can be conveniently run in a web browser. Each chapter concludes with exercises complementing or extending the material in the text.
Product Details :
Genre |
: Science |
Author |
: Morton John Canty |
Publisher |
: CRC Press |
Release |
: 2019-03-11 |
File |
: 532 Pages |
ISBN-13 |
: 9780429875359 |
eBook Download
BOOK EXCERPT:
Change Detection and Image Time Series Analysis 1 presents a wide range of unsupervised methods for temporal evolution analysis through the use of image time series associated with optical and/or synthetic aperture radar acquisition modalities. Chapter 1 introduces two unsupervised approaches to multiple-change detection in bi-temporal multivariate images, with Chapters 2 and 3 addressing change detection in image time series in the context of the statistical analysis of covariance matrices. Chapter 4 focuses on wavelets and convolutional-neural filters for feature extraction and entropy-based anomaly detection, and Chapter 5 deals with a number of metrics such as cross correlation ratios and the Hausdorff distance for variational analysis of the state of snow. Chapter 6 presents a fractional dynamic stochastic field model for spatio temporal forecasting and for monitoring fast-moving meteorological events such as cyclones. Chapter 7 proposes an analysis based on characteristic points for texture modeling, in the context of graph theory, and Chapter 8 focuses on detecting new land cover types by classification-based change detection or feature/pixel based change detection. Chapter 9 focuses on the modeling of classes in the difference image and derives a multiclass model for this difference image in the context of change vector analysis.
Product Details :
Genre |
: Computers |
Author |
: Abdourrahmane M. Atto |
Publisher |
: John Wiley & Sons |
Release |
: 2022-01-06 |
File |
: 306 Pages |
ISBN-13 |
: 9781789450569 |
eBook Download
BOOK EXCERPT:
Remote Sensing image analysis is mostly done using only spectral information on a pixel by pixel basis. Information captured in neighbouring cells, or information about patterns surrounding the pixel of interest often provides useful supplementary information. This book presents a wide range of innovative and advanced image processing methods for including spatial information, captured by neighbouring pixels in remotely sensed images, to improve image interpretation or image classification. Presented methods include different types of variogram analysis, various methods for texture quantification, smart kernel operators, pattern recognition techniques, image segmentation methods, sub-pixel methods, wavelets and advanced spectral mixture analysis techniques. Apart from explaining the working methods in detail a wide range of applications is presented covering land cover and land use mapping, environmental applications such as heavy metal pollution, urban mapping and geological applications to detect hydrocarbon seeps. The book is meant for professionals, PhD students and graduates who use remote sensing image analysis, image interpretation and image classification in their work related to disciplines such as geography, geology, botany, ecology, forestry, cartography, soil science, engineering and urban and regional planning.
Product Details :
Genre |
: Science |
Author |
: Steven M. de Jong |
Publisher |
: Springer Science & Business Media |
Release |
: 2007-07-26 |
File |
: 370 Pages |
ISBN-13 |
: 9781402025600 |
eBook Download
BOOK EXCERPT:
Demonstrating the breadth and depth of growth in the field since the publication of the popular first edition, Image Analysis, Classification and Change Detection in Remote Sensing, with Algorithms for ENVI/IDL, Second Edition has been updated and expanded to keep pace with the latest versions of the ENVI software environment. Effectively interweaving theory, algorithms, and computer codes, the text supplies an accessible introduction to the techniques used in the processing of remotely sensed imagery. This significantly expanded edition presents numerous image analysis examples and algorithms, all illustrated in the array-oriented language IDL—allowing readers to plug the illustrations and applications covered in the text directly into the ENVI system—in a completely transparent fashion. Revised chapters on image arrays, linear algebra, and statistics convey the required foundation, while updated chapters detail kernel methods for principal component analysis, kernel-based clustering, and classification with support vector machines. Additions to this edition include: An introduction to mutual information and entropy Algorithms and code for image segmentation In-depth treatment of ensemble classification (adaptive boosting ) Improved IDL code for all ENVI extensions, with routines that can take advantage of the parallel computational power of modern graphics processors Code that runs on all versions of the ENVI/IDL software environment from ENVI 4.1 up to the present—available on the author's website Many new end-of-chapter exercises and programming projects With its numerous programming examples in IDL and many applications supporting ENVI, such as data fusion, statistical change detection, clustering and supervised classification with neural networks—all available as downloadable source code—this self-contained text is ideal for classroom use or self study.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Morton J. Canty |
Publisher |
: CRC Press |
Release |
: 2011-03-05 |
File |
: 474 Pages |
ISBN-13 |
: 9781420087147 |
eBook Download
BOOK EXCERPT:
The main objective of this book is to provide a common platform for diverse concepts in satellite image processing. In particular it presents the state-of-the-art in Artificial Intelligence (AI) methodologies and shares findings that can be translated into real-time applications to benefit humankind. Interdisciplinary in its scope, the book will be of interest to both newcomers and experienced scientists working in the fields of satellite image processing, geo-engineering, remote sensing and Artificial Intelligence. It can be also used as a supplementary textbook for graduate students in various engineering branches related to image processing.
Product Details :
Genre |
: Computers |
Author |
: D. Jude Hemanth |
Publisher |
: Springer Nature |
Release |
: 2019-11-13 |
File |
: 277 Pages |
ISBN-13 |
: 9783030241780 |
eBook Download
BOOK EXCERPT:
Thanks to recent advances in sensors, communication and satellite technology, data storage, processing and networking capabilities, satellite image acquisition and mining are now on the rise. In turn, satellite images play a vital role in providing essential geographical information. Highly accurate automatic classification and decision support systems can facilitate the efforts of data analysts, reduce human error, and allow the rapid and rigorous analysis of land use and land cover information. Integrating Machine Learning (ML) technology with the human visual psychometric can help meet geologists’ demands for more efficient and higher-quality classification in real time. This book introduces readers to key concepts, methods and models for satellite image analysis; highlights state-of-the-art classification and clustering techniques; discusses recent developments and remaining challenges; and addresses various applications, making it a valuable asset for engineers, data analysts and researchers in the fields of geographic information systems and remote sensing engineering.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Surekha Borra |
Publisher |
: Springer |
Release |
: 2019-02-08 |
File |
: 110 Pages |
ISBN-13 |
: 9789811364242 |
eBook Download
BOOK EXCERPT:
A volume in the three-volume Remote Sensing Handbook series, Remote Sensing of Water Resources, Disasters, and Urban Studies documents the scientific and methodological advances that have taken place during the last 50 years. The other two volumes in the series are Remotely Sensed Data Characterization, Classification, and Accuracies, and Land Reso
Product Details :
Genre |
: Technology & Engineering |
Author |
: Prasad Thenkabail |
Publisher |
: CRC Press |
Release |
: 2018-10-03 |
File |
: 2262 Pages |
ISBN-13 |
: 9781482282672 |
eBook Download
BOOK EXCERPT:
The third edition of the bestselling Classification Methods for Remotely Sensed Data covers current state-of-the-art machine learning algorithms and developments in the analysis of remotely sensed data. This book is thoroughly updated to meet the needs of readers today and provides six new chapters on deep learning, feature extraction and selection, multisource image fusion, hyperparameter optimization, accuracy assessment with model explainability, and object-based image analysis, which is relatively a new paradigm in image processing and classification. It presents new AI-based analysis tools and metrics together with ongoing debates on accuracy assessment strategies and XAI methods. New in this edition: Provides comprehensive background on the theory of deep learning and its application to remote sensing data. Includes a chapter on hyperparameter optimization techniques to guarantee the highest performance in classification applications. Outlines the latest strategies and accuracy measures in accuracy assessment and summarizes accuracy metrics and assessment strategies. Discusses the methods used for explaining inherent structures and weighing the features of ML and AI algorithms that are critical for explaining the robustness of the models. This book is intended for industry professionals, researchers, academics, and graduate students who want a thorough and up-to-date guide to the many and varied techniques of image classification applied in the fields of geography, geospatial and earth sciences, electronic and computer science, environmental engineering, etc.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Taskin Kavzoglu |
Publisher |
: CRC Press |
Release |
: 2024-09-04 |
File |
: 444 Pages |
ISBN-13 |
: 9781040099056 |