Introduction To Learning Classifier Systems

eBook Download

BOOK EXCERPT:

This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners.

Product Details :

Genre : Computers
Author : Ryan J. Urbanowicz
Publisher : Springer
Release : 2017-08-17
File : 135 Pages
ISBN-13 : 9783662550076


Learning Classifier Systems

eBook Download

BOOK EXCERPT:

Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.

Product Details :

Genre : Computers
Author : Pier L. Lanzi
Publisher : Springer
Release : 2003-06-26
File : 344 Pages
ISBN-13 : 9783540450276


Learning Classifier Systems

eBook Download

BOOK EXCERPT:

This book constitutes the thoroughly refereed joint post-conference proceedings of two consecutive International Workshops on Learning Classifier Systems that took place in Seattle, WA, USA in July 2006, and in London, UK, in July 2007 - all hosted by the Genetic and Evolutionary Computation Conference, GECCO. The 14 revised full papers presented were carefully reviewed and selected from the workshop contributions. The papers are organized in topical sections on knowledge representation, analysis of the system, mechanisms, new directions, as well as applications.

Product Details :

Genre : Computers
Author : Jaume Bacardit
Publisher : Springer
Release : 2008-10-17
File : 316 Pages
ISBN-13 : 9783540881384


Learning Classifier Systems

eBook Download

BOOK EXCERPT:

The 5th International Workshop on Learning Classi?er Systems (IWLCS2002) was held September 7–8, 2002, in Granada, Spain, during the 7th International Conference on Parallel Problem Solving from Nature (PPSN VII). We have included in this volume revised and extended versions of the papers presented at the workshop. In the ?rst paper, Browne introduces a new model of learning classi?er system, iLCS, and tests it on the Wisconsin Breast Cancer classi?cation problem. Dixon et al. present an algorithm for reducing the solutions evolved by the classi?er system XCS, so as to produce a small set of readily understandable rules. Enee and Barbaroux take a close look at Pittsburgh-style classi?er systems, focusing on the multi-agent problem known as El-farol. Holmes and Bilker investigate the effect that various types of missing data have on the classi?cation performance of learning classi?er systems. The two papers by Kovacs deal with an important theoretical issue in learning classi?er systems: the use of accuracy-based ?tness as opposed to the more traditional strength-based ?tness. In the ?rst paper, Kovacs introduces a strength-based version of XCS, called SB-XCS. The original XCS and the new SB-XCS are compared in the second paper, where - vacs discusses the different classes of solutions that XCS and SB-XCS tend to evolve.

Product Details :

Genre : Computers
Author : Pier Luca Lanzi
Publisher : Springer
Release : 2003-11-24
File : 238 Pages
ISBN-13 : 9783540400295


Learning Classifier Systems In Data Mining

eBook Download

BOOK EXCERPT:

Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings together work by a number of individuals who are demonstrating their good performance in a variety of domains. The first contribution is arranged as follows: Firstly, the main forms of LCS are described in some detail. A number of historical uses of LCS in data mining are then reviewed before an overview of the rest of the volume is presented. The rest of this book describes recent research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles, and knowledge discovery.

Product Details :

Genre : Technology & Engineering
Author : Larry Bull
Publisher : Springer
Release : 2008-07-01
File : 234 Pages
ISBN-13 : 9783540789796


Foundations Of Learning Classifier Systems

eBook Download

BOOK EXCERPT:

This volume brings together recent theoretical work in Learning Classifier Systems (LCS), which is a Machine Learning technique combining Genetic Algorithms and Reinforcement Learning. It includes self-contained background chapters on related fields (reinforcement learning and evolutionary computation) tailored for a classifier systems audience and written by acknowledged authorities in their area - as well as a relevant historical original work by John Holland.

Product Details :

Genre : Computers
Author : Larry Bull
Publisher : Springer Science & Business Media
Release : 2005-07-22
File : 354 Pages
ISBN-13 : 3540250735


Advances In Learning Classifier Systems

eBook Download

BOOK EXCERPT:

Learning classi er systems are rule-based systems that exploit evolutionary c- putation and reinforcement learning to solve di cult problems. They were - troduced in 1978 by John H. Holland, the father of genetic algorithms, and since then they have been applied to domains as diverse as autonomous robotics, trading agents, and data mining. At the Second International Workshop on Learning Classi er Systems (IWLCS 99), held July 13, 1999, in Orlando, Florida, active researchers reported on the then current state of learning classi er system research and highlighted some of the most promising research directions. The most interesting contri- tions to the meeting are included in the book Learning Classi er Systems: From Foundations to Applications, published as LNAI 1813 by Springer-Verlag. The following year, the Third International Workshop on Learning Classi er Systems (IWLCS 2000), held September 15{16 in Paris, gave participants the opportunity to discuss further advances in learning classi er systems. We have included in this volume revised and extended versions of thirteen of the papers presented at the workshop.

Product Details :

Genre : Computers
Author : Pier L. Lanzi
Publisher : Springer
Release : 2003-07-31
File : 270 Pages
ISBN-13 : 9783540446408


Design And Analysis Of Learning Classifier Systems

eBook Download

BOOK EXCERPT:

This book is probably best summarized as providing a principled foundation for Learning Classi?er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de?nition – derived from machine learning – of “a good set of cl- si?ers”, based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi?ers using that de?nition as a ?tness criterion, seeing ifthe setprovidesa goodsolutionto twodi?erent function approximation problems. It appears to, meaning that in some sense his de?nition of “good set of classi?ers” (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi?ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.

Product Details :

Genre : Computers
Author : Jan Drugowitsch
Publisher : Springer
Release : 2008-06-17
File : 274 Pages
ISBN-13 : 9783540798668


Learning Classifier Systems

eBook Download

BOOK EXCERPT:

This book constitutes the thoroughly refereed joint post-proceedings of three consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL in July 2003, in Seattle, WA in June 2004, and in Washington, DC in June 2005. Topics in the 22 revised full papers range from theoretical analysis of mechanisms to practical consideration for successful application of such techniques to everyday datamining tasks.

Product Details :

Genre : Computers
Author : Tim Kovacs
Publisher : Springer
Release : 2007-06-11
File : 356 Pages
ISBN-13 : 9783540712312


Anticipatory Learning Classifier Systems

eBook Download

BOOK EXCERPT:

Anticipatory Learning Classifier Systems describes the state of the art of anticipatory learning classifier systems-adaptive rule learning systems that autonomously build anticipatory environmental models. An anticipatory model specifies all possible action-effects in an environment with respect to given situations. It can be used to simulate anticipatory adaptive behavior. Anticipatory Learning Classifier Systems highlights how anticipations influence cognitive systems and illustrates the use of anticipations for (1) faster reactivity, (2) adaptive behavior beyond reinforcement learning, (3) attentional mechanisms, (4) simulation of other agents and (5) the implementation of a motivational module. The book focuses on a particular evolutionary model learning mechanism, a combination of a directed specializing mechanism and a genetic generalizing mechanism. Experiments show that anticipatory adaptive behavior can be simulated by exploiting the evolving anticipatory model for even faster model learning, planning applications, and adaptive behavior beyond reinforcement learning. Anticipatory Learning Classifier Systems gives a detailed algorithmic description as well as a program documentation of a C++ implementation of the system.

Product Details :

Genre : Computers
Author : Martin V. Butz
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 197 Pages
ISBN-13 : 9781461508915