Introduction To Learning Machines

eBook Download

BOOK EXCERPT:

Learning machines and concept of pattern recognition.

Product Details :

Genre : Machine learning
Author : Jack G. Sheppard
Publisher :
Release : 1970
File : 36 Pages
ISBN-13 : UIUC:30112106780486


An Introduction To Support Vector Machines And Other Kernel Based Learning Methods

eBook Download

BOOK EXCERPT:

This is the first comprehensive introduction to Support Vector Machines (SVMs), a generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software.

Product Details :

Genre : Computers
Author : Nello Cristianini
Publisher : Cambridge University Press
Release : 2000-03-23
File : 208 Pages
ISBN-13 : 9781139643634


Efficient Learning Machines

eBook Download

BOOK EXCERPT:

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Product Details :

Genre : Computers
Author : Mariette Awad
Publisher : Apress
Release : 2015-04-27
File : 263 Pages
ISBN-13 : 9781430259909


Introduction To Machine Learning Fourth Edition

eBook Download

BOOK EXCERPT:

A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.

Product Details :

Genre : Computers
Author : Ethem Alpaydin
Publisher : MIT Press
Release : 2020-03-24
File : 709 Pages
ISBN-13 : 9780262358064


Advances In Independent Component Analysis And Learning Machines

eBook Download

BOOK EXCERPT:

In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: - A unifying probabilistic model for PCA and ICA - Optimization methods for matrix decompositions - Insights into the FastICA algorithm - Unsupervised deep learning - Machine vision and image retrieval - A review of developments in the theory and applications of independent component analysis, and its influence in important areas such as statistical signal processing, pattern recognition and deep learning - A diverse set of application fields, ranging from machine vision to science policy data - Contributions from leading researchers in the field

Product Details :

Genre : Computers
Author : Ella Bingham
Publisher : Academic Press
Release : 2015-05-14
File : 329 Pages
ISBN-13 : 9780128028070


Nasa Technical Note

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author :
Publisher :
Release : 1970
File : 536 Pages
ISBN-13 : MINN:31951000846288R


An Introduction To Machine Learning In Quantitative Finance

eBook Download

BOOK EXCERPT:

In today's world, we are increasingly exposed to the words 'machine learning' (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authorsFeatured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!

Product Details :

Genre : Business & Economics
Author : Hao Ni
Publisher : World Scientific
Release : 2021-04-07
File : 263 Pages
ISBN-13 : 9781786349385


A Hands On Introduction To Machine Learning

eBook Download

BOOK EXCERPT:

Packed with real-world examples, industry insights and practical activities, this textbook is designed to teach machine learning in a way that is easy to understand and apply. It assumes only a basic knowledge of technology, making it an ideal resource for students and professionals, including those who are new to computer science. All the necessary topics are covered, including supervised and unsupervised learning, neural networks, reinforcement learning, cloud-based services, and the ethical issues still posing problems within the industry. While Python is used as the primary language, many exercises will also have the solutions provided in R for greater versatility. A suite of online resources is available to support teaching across a range of different courses, including example syllabi, a solutions manual, and lecture slides. Datasets and code are also available online for students, giving them everything they need to practice the examples and problems in the book.

Product Details :

Genre : Computers
Author : Chirag Shah
Publisher : Cambridge University Press
Release : 2022-12-31
File : 436 Pages
ISBN-13 : 9781009325172


Extreme Learning Machines 2013 Algorithms And Applications

eBook Download

BOOK EXCERPT:

In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability. This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discussions of “learning without iterative tuning". This book covers algorithms and applications of ELM. It gives readers a glance of the newest developments of ELM.

Product Details :

Genre : Technology & Engineering
Author : Fuchen Sun
Publisher : Springer
Release : 2014-07-08
File : 224 Pages
ISBN-13 : 9783319047416


Support Vector Machines Theory And Applications

eBook Download

BOOK EXCERPT:

The support vector machine (SVM) has become one of the standard tools for machine learning and data mining. This carefully edited volume presents the state of the art of the mathematical foundation of SVM in statistical learning theory, as well as novel algorithms and applications. Support Vector Machines provides a selection of numerous real-world applications, such as bioinformatics, text categorization, pattern recognition, and object detection, written by leading experts in their respective fields.

Product Details :

Genre : Computers
Author : Lipo Wang
Publisher : Springer Science & Business Media
Release : 2005-06-21
File : 456 Pages
ISBN-13 : 3540243887