Introduction To The Theory Of Algebraic Numbers And Fuctions

eBook Download

BOOK EXCERPT:

Introduction to the Theory of Algebraic Numbers and Fuctions

Product Details :

Genre : Mathematics
Author :
Publisher : Academic Press
Release : 1966-01-01
File : 341 Pages
ISBN-13 : 9780080873350


Introduction To The Theory Of Algebraic Numbers And Functions

eBook Download

BOOK EXCERPT:

This book serves to introduce the general notions, the concepts, and the methods which underlie the theories of algebraic numbers and algebraic functions, primarily in one variable. It also introduces the theory of elliptic modular functions, which has deep applications in analytic number theory.

Product Details :

Genre : Mathematics
Author : Martin Eichler
Publisher :
Release : 1966
File : 340 Pages
ISBN-13 : MINN:31951000476116U


Number Theory

eBook Download

BOOK EXCERPT:

Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.

Product Details :

Genre : Mathematics
Author : Helmut Koch
Publisher : American Mathematical Soc.
Release : 2000
File : 390 Pages
ISBN-13 : 0821820540


Algebraic Numbers And Algebraic Functions

eBook Download

BOOK EXCERPT:

This book is an introduction to the theory of algebraic numbers and algebraic functions of one variable. The basic development is the same for both using E Artin's legant approach, via valuations. Number Theory is pursued as far as the unit theorem and the finiteness of the class number. In function theory the aim is the Abel-Jacobi theorem describing the devisor class group, with occasional geometrical asides to help understanding. Assuming only an undergraduate course in algebra, plus a little acquaintance with topology and complex function theory, the book serves as an introduction to more technical works in algebraic number theory, function theory or algebraic geometry by an exposition of the central themes in the subject.

Product Details :

Genre : Mathematics
Author : P.M. Cohn
Publisher : CRC Press
Release : 2018-01-18
File : 204 Pages
ISBN-13 : 9781351078030


The Theory Of Algebraic Numbers

eBook Download

BOOK EXCERPT:

Excellent intro to basics of algebraic number theory. Gausian primes; polynomials over a field; algebraic number fields; algebraic integers and integral bases; uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; Fermat conjecture. 1975 edition.

Product Details :

Genre : Mathematics
Author : Harry Pollard
Publisher : Courier Corporation
Release : 1998-01-01
File : 196 Pages
ISBN-13 : 0486404544


Algebraic Number Fields

eBook Download

BOOK EXCERPT:

Algebraic Number Fields

Product Details :

Genre : Mathematics
Author :
Publisher : Academic Press
Release : 1973-08-15
File : 233 Pages
ISBN-13 : 9780080873701


Lectures On The Theory Of Algebraic Numbers

eBook Download

BOOK EXCERPT:

. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.

Product Details :

Genre : Mathematics
Author : E. T. Hecke
Publisher : Springer Science & Business Media
Release : 2013-03-09
File : 251 Pages
ISBN-13 : 9781475740929


A Course In Functional Analysis

eBook Download

BOOK EXCERPT:

This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS

Product Details :

Genre : Mathematics
Author : John B Conway
Publisher : Springer
Release : 2019-03-09
File : 416 Pages
ISBN-13 : 9781475743838


A Course In Algebra

eBook Download

BOOK EXCERPT:

Great book! The author's teaching experinece shows in every chapter. --Efim Zelmanov, University of California, San Diego Vinberg has written an algebra book that is excellent, both as a classroom text or for self-study. It is plain that years of teaching abstract algebra have enabled him to say the right thing at the right time. --Irving Kaplansky, MSRI This is a comprehensive text on modern algebra written for advanced undergraduate and basic graduate algebra classes. The book is based on courses taught by the author at the Mechanics and Mathematics Department of Moscow State University and at the Mathematical College of the Independent University of Moscow. The unique feature of the book is that it contains almost no technically difficult proofs. Following his point of view on mathematics, the author tried, whenever possible, to replace calculations and difficult deductions with conceptual proofs and to associate geometric images to algebraic objects. Another important feature is that the book presents most of the topics on several levels, allowing the student to move smoothly from initial acquaintance to thorough study and deeper understanding of the subject. Presented are basic topics in algebra such as algebraic structures, linear algebra, polynomials, groups, as well as more advanced topics like affine and projective spaces, tensor algebra, Galois theory, Lie groups, associative algebras and their representations. Some applications of linear algebra and group theory to physics are discussed. Written with extreme care and supplied with more than 200 exercises and 70 figures, the book is also an excellent text for independent study.

Product Details :

Genre : Mathematics
Author : Ėrnest Borisovich Vinberg
Publisher : American Mathematical Soc.
Release : 2003
File : 526 Pages
ISBN-13 : 9780821833186


Elements Of Homology Theory

eBook Download

BOOK EXCERPT:

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.

Product Details :

Genre : Mathematics
Author : Viktor Vasilʹevich Prasolov
Publisher : American Mathematical Soc.
Release : 2007
File : 432 Pages
ISBN-13 : 9780821838129