eBook Download
BOOK EXCERPT:
Table of contents
Product Details :
Genre | : Mathematics |
Author | : H. A. van der Vorst |
Publisher | : Cambridge University Press |
Release | : 2003-04-17 |
File | : 242 Pages |
ISBN-13 | : 0521818281 |
Download PDF Ebooks Easily, FREE and Latest
WELCOME TO THE LIBRARY!!!
What are you looking for Book "Iterative Krylov Methods For Large Linear Systems" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
Table of contents
Genre | : Mathematics |
Author | : H. A. van der Vorst |
Publisher | : Cambridge University Press |
Release | : 2003-04-17 |
File | : 242 Pages |
ISBN-13 | : 0521818281 |
This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods’ implementations and coding as Matlab®-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.
Genre | : Mathematics |
Author | : Gérard Meurant |
Publisher | : Springer Nature |
Release | : 2020-10-02 |
File | : 686 Pages |
ISBN-13 | : 9783030552510 |
A comprehensive treatment of numerical linear algebra from the standpoint of both theory and practice. The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on • fast transforms • parallel LU • discrete Poisson solvers • pseudospectra • structured linear equation problems • structured eigenvalue problems • large-scale SVD methods • polynomial eigenvalue problems Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature—everything needed to become a matrix-savvy developer of numerical methods and software. The second most cited math book of 2012 according to MathSciNet, the book has placed in the top 10 for since 2005.
Genre | : Mathematics |
Author | : Gene H. Golub |
Publisher | : JHU Press |
Release | : 2013-02-15 |
File | : 781 Pages |
ISBN-13 | : 9781421408590 |
Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.
Genre | : Mathematics |
Author | : Åke Björck |
Publisher | : Springer |
Release | : 2014-10-07 |
File | : 812 Pages |
ISBN-13 | : 9783319050898 |
Large sparse linear systems of equations are ubiquitous in science, engineering and beyond. This open access monograph focuses on factorization algorithms for solving such systems. It presents classical techniques for complete factorizations that are used in sparse direct methods and discusses the computation of approximate direct and inverse factorizations that are key to constructing general-purpose algebraic preconditioners for iterative solvers. A unified framework is used that emphasizes the underlying sparsity structures and highlights the importance of understanding sparse direct methods when developing algebraic preconditioners. Theoretical results are complemented by sparse matrix algorithm outlines. This monograph is aimed at students of applied mathematics and scientific computing, as well as computational scientists and software developers who are interested in understanding the theory and algorithms needed to tackle sparse systems. It is assumed that the reader has completed a basic course in linear algebra and numerical mathematics.
Genre | : Mathematics |
Author | : Jennifer Scott |
Publisher | : Springer Nature |
Release | : 2023-04-29 |
File | : 254 Pages |
ISBN-13 | : 9783031258206 |
These days, computer-based simulation is considered the quintessential approach to exploring new ideas in the different disciplines of science, engineering and technology (SET). To perform simulations, a physical system needs to be modeled using mathematics; these models are often represented by linear time-invariant (LTI) continuous-time (CT) systems. Oftentimes these systems are subject to additional algebraic constraints, leading to first- or second-order differential-algebraic equations (DAEs), otherwise known as descriptor systems. Such large-scale systems generally lead to massive memory requirements and enormous computational complexity, thus restricting frequent simulations, which are required by many applications. To resolve these complexities, the higher-dimensional system may be approximated by a substantially lower-dimensional one through model order reduction (MOR) techniques. Computational Methods for Approximation of Large-Scale Dynamical Systems discusses computational techniques for the MOR of large-scale sparse LTI CT systems. Although the book puts emphasis on the MOR of descriptor systems, it begins by showing and comparing the various MOR techniques for standard systems. The book also discusses the low-rank alternating direction implicit (LR-ADI) iteration and the issues related to solving the Lyapunov equation of large-scale sparse LTI systems to compute the low-rank Gramian factors, which are important components for implementing the Gramian-based MOR. Although this book is primarly aimed at post-graduate students and researchers of the various SET disciplines, the basic contents of this book can be supplemental to the advanced bachelor's-level students as well. It can also serve as an invaluable reference to researchers working in academics and industries alike. Features: Provides an up-to-date, step-by-step guide for its readers. Each chapter develops theories and provides necessary algorithms, worked examples, numerical experiments and related exercises. With the combination of this book and its supplementary materials, the reader gains a sound understanding of the topic. The MATLAB® codes for some selected algorithms are provided in the book. The solutions to the exercise problems, experiment data sets and a digital copy of the software are provided on the book's website; The numerical experiments use real-world data sets obtained from industries and research institutes.
Genre | : Mathematics |
Author | : Mohammad Monir Uddin |
Publisher | : CRC Press |
Release | : 2019-04-30 |
File | : 345 Pages |
ISBN-13 | : 9781351028608 |
Describes the principles and history behind the use of Krylov subspace methods in science and engineering. The outcome of the analysis is very practical and indicates what can and cannot be expected from the use of Krylov subspace methods, challenging some common assumptions and justifications of standard approaches.
Genre | : Mathematics |
Author | : Jörg Liesen |
Publisher | : Numerical Mathematics and Scie |
Release | : 2013 |
File | : 408 Pages |
ISBN-13 | : 9780199655410 |
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and
Genre | : Mathematics |
Author | : Leslie Hogben |
Publisher | : CRC Press |
Release | : 2013-11-26 |
File | : 1838 Pages |
ISBN-13 | : 9781466507296 |
This graduate level textbook covers an especially broad range of topics. The book first offers a careful discussion of the basics of linear algebra. It then proceeds to a discussion of modules, emphasizing a comparison with vector spaces, and presents a thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory, culminating in the finite dimensional spectral theorem for normal operators. The new edition has been revised and contains a chapter on the QR decomposition, singular values and pseudoinverses, and a chapter on convexity, separation and positive solutions to linear systems.
Genre | : Mathematics |
Author | : Steven Roman |
Publisher | : Springer Science & Business Media |
Release | : 2007-09-20 |
File | : 528 Pages |
ISBN-13 | : 9780387728315 |
An undergraduate textbook that highlights motivating applications and contains summary sections, examples, exercises, online MATLAB codes and a MATLAB toolkit. All the major topics of computational linear algebra are covered, from basic concepts to advanced topics such as the quadratic eigenvalue problem in later chapters.
Genre | : Mathematics |
Author | : Biswa Nath Datta |
Publisher | : SIAM |
Release | : 2010-02-04 |
File | : 545 Pages |
ISBN-13 | : 9780898716856 |