Krylov Solvers For Linear Algebraic Systems

eBook Download

BOOK EXCERPT:

The first four chapters of this book give a comprehensive and unified theory of the Krylov methods. Many of these are shown to be particular examples ofthe block conjugate-gradient algorithm and it is this observation thatpermits the unification of the theory. The two major sub-classes of thosemethods, the Lanczos and the Hestenes-Stiefel, are developed in parallel asnatural generalisations of the Orthodir (GCR) and Orthomin algorithms. Theseare themselves based on Arnoldi's algorithm and a generalised Gram-Schmidtalgorithm and their properties, in particular their stability properties,are determined by the two matrices that define the block conjugate-gradientalgorithm. These are the matrix of coefficients and the preconditioningmatrix.In Chapter 5 the"transpose-free" algorithms based on the conjugate-gradient squared algorithm are presented while Chapter 6 examines the various ways in which the QMR technique has been exploited. Look-ahead methods and general block methods are dealt with in Chapters 7 and 8 while Chapter 9 is devoted to error analysis of two basic algorithms.In Chapter 10 the results of numerical testing of the more important algorithms in their basic forms (i.e. without look-ahead or preconditioning) are presented and these are related to the structure of the algorithms and the general theory. Graphs illustrating the performances of various algorithm/problem combinations are given via a CD-ROM.Chapter 11, by far the longest, gives a survey of preconditioning techniques. These range from the old idea of polynomial preconditioning via SOR and ILU preconditioning to methods like SpAI, AInv and the multigrid methods that were developed specifically for use with parallel computers. Chapter 12 is devoted to dual algorithms like Orthores and the reverse algorithms of Hegedus. Finally certain ancillary matters like reduction to Hessenberg form, Chebychev polynomials and the companion matrix are described in a series of appendices.·comprehensive and unified approach·up-to-date chapter on preconditioners·complete theory of stability·includes dual and reverse methods·comparison of algorithms on CD-ROM·objective assessment of algorithms

Product Details :

Genre : Mathematics
Author : Charles George Broyden
Publisher : Elsevier
Release : 2004-09-08
File : 343 Pages
ISBN-13 : 9780080478876


Krylov Methods For Nonsymmetric Linear Systems

eBook Download

BOOK EXCERPT:

This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods’ implementations and coding as Matlab®-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.

Product Details :

Genre : Mathematics
Author : Gérard Meurant
Publisher : Springer Nature
Release : 2020-10-02
File : 686 Pages
ISBN-13 : 9783030552510


A Journey Through The History Of Numerical Linear Algebra

eBook Download

BOOK EXCERPT:

This expansive volume describes the history of numerical methods proposed for solving linear algebra problems, from antiquity to the present day. The authors focus on methods for linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, people involved in scientific computing, and historians of mathematics.

Product Details :

Genre : Mathematics
Author : Claude Brezinski
Publisher : SIAM
Release : 2022-12-06
File : 813 Pages
ISBN-13 : 9781611977233


Linear Algebra To Differential Equations

eBook Download

BOOK EXCERPT:

Linear Algebra to Differential Equations concentrates on the essential topics necessary for all engineering students in general and computer science branch students, in particular. Specifically, the topics dealt will help the reader in applying linear algebra as a tool. The advent of high-speed computers has paved the way for studying large systems of linear equations as well as large systems of linear differential equations. Along with the standard numerical methods, methods that curb the progress of error are given for solving linear systems of equations. The topics of linear algebra and differential equations are linked by Kronecker products and calculus of matrices. These topics are useful in dealing with linear systems of differential equations and matrix differential equations. Differential equations are treated in terms of vector and matrix differential systems, as they naturally arise while formulating practical problems. The essential concepts dealing with the solutions and their stability are briefly presented to motivate the reader towards further investigation. This book caters to the needs of Engineering students in general and in particular, to students of Computer Science & Engineering, Artificial Intelligence, Machine Learning and Robotics. Further, the book provides a quick and complete overview of linear algebra and introduces linear differential systems, serving the basic requirements of scientists and researchers in applied fields. Features Provides complete basic knowledge of the subject Exposes the necessary topics lucidly Introduces the abstraction and at the same time is down to earth Highlights numerical methods and approaches that are more useful Essential techniques like SVD and PCA are given Applications (both classical and novel) bring out similarities in various disciplines: Illustrative examples for every concept: A brief overview of techniques that hopefully serves the present and future needs of students and scientists.

Product Details :

Genre : Mathematics
Author : J. Vasundhara Devi
Publisher : CRC Press
Release : 2021-09-27
File : 416 Pages
ISBN-13 : 9781351014946


Numerical Analysis

eBook Download

BOOK EXCERPT:

Revised and updated, this second edition of Walter Gautschi's successful Numerical Analysis explores computational methods for problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second edition includes the expansion of an already large collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors.

Product Details :

Genre : Mathematics
Author : Walter Gautschi
Publisher : Springer Science & Business Media
Release : 2011-12-06
File : 611 Pages
ISBN-13 : 9780817682590


Parallel And Distributed Scientific And Engineering Computing

eBook Download

BOOK EXCERPT:

In the not too distant future, every researcher and professional in science and engineering fields will have to understand parallel and distributed computing. With hyperthreading in Intel processors, hypertransport links in AMD processors, multi-core silicon in today's high-end microprocessors from IBM and emerging cluster and grid computing, parallel and distributed computers have moved into the mainstream of computing. To fully exploit these advances in computer architectures, researchers and professionals must start to design parallel or distributed software, systems and algorithms for their scientific and engineering applications. Parallel and distributed scientific and engineering computing has become a key technology which will play an important part in determining, or at least shaping, future research and development activities in many academic and industrial branches. This book reports on the recent important advances in the area of parallel and distributed computing for science and engineering applications. Included in the book are selected papers from prestigious workshops such as PACT-SHPSEC, IPDPS-PDSECA and ICPP-HPSECA together with some invited papers from prominent researchers around the world. The book is basically divided into five main sections. These chapters not only provide novel ideas, new experimental results and handful experience in this field, but also stimulate the future research activities in the area of parallel and distributed computing for science and engineering applications.

Product Details :

Genre : Computers
Author : Yi Pan
Publisher : Nova Publishers
Release : 2004
File : 240 Pages
ISBN-13 : 1590339568


Iterative Methods For Linear Systems

eBook Download

BOOK EXCERPT:

Iterative Methods for Linear Systems offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.

Product Details :

Genre : Mathematics
Author : Maxim A. Olshanskii
Publisher : SIAM
Release : 2014-01-01
File : 257 Pages
ISBN-13 : 9781611973457


Krylov Subspace Methods

eBook Download

BOOK EXCERPT:

Describes the principles and history behind the use of Krylov subspace methods in science and engineering. The outcome of the analysis is very practical and indicates what can and cannot be expected from the use of Krylov subspace methods, challenging some common assumptions and justifications of standard approaches.

Product Details :

Genre : Mathematics
Author : Jörg Liesen
Publisher : Numerical Mathematics and Scie
Release : 2013
File : 408 Pages
ISBN-13 : 9780199655410


Solving Pdes In Python

eBook Download

BOOK EXCERPT:

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Product Details :

Genre : Computers
Author : Hans Petter Langtangen
Publisher : Springer
Release : 2017-03-21
File : 152 Pages
ISBN-13 : 9783319524627


Iterative Methods For Solving Linear Systems

eBook Download

BOOK EXCERPT:

Mathematics of Computing -- Numerical Analysis.

Product Details :

Genre : Mathematics
Author : Anne Greenbaum
Publisher : SIAM
Release : 1997-01-01
File : 225 Pages
ISBN-13 : 9780898713961