Kuranishi Structures And Virtual Fundamental Chains

eBook Download

BOOK EXCERPT:

The package of Gromov’s pseudo-holomorphic curves is a major tool in global symplectic geometry and its applications, including mirror symmetry and Hamiltonian dynamics. The Kuranishi structure was introduced by two of the authors of the present volume in the mid-1990s to apply this machinery on general symplectic manifolds without assuming any specific restrictions. It was further amplified by this book’s authors in their monograph Lagrangian Intersection Floer Theory and in many other publications of theirs and others. Answering popular demand, the authors now present the current book, in which they provide a detailed, self-contained explanation of the theory of Kuranishi structures. Part I discusses the theory on a single space equipped with Kuranishi structure, called a K-space, and its relevant basic package. First, the definition of a K-space and maps to the standard manifold are provided. Definitions are given for fiber products, differential forms, partitions of unity, and the notion of CF-perturbations on the K-space. Then, using CF-perturbations, the authors define the integration on K-space and the push-forward of differential forms, and generalize Stokes' formula and Fubini's theorem in this framework. Also, “virtual fundamental class” is defined, and its cobordism invariance is proved. Part II discusses the (compatible) system of K-spaces and the process of going from “geometry” to “homological algebra”. Thorough explanations of the extension of given perturbations on the boundary to the interior are presented. Also explained is the process of taking the “homotopy limit” needed to handle a system of infinitely many moduli spaces. Having in mind the future application of these chain level constructions beyond those already known, an axiomatic approach is taken by listing the properties of the system of the relevant moduli spaces and then a self-contained account of the construction of the associated algebraic structures is given. This axiomatic approach makes the exposition contained here independent of previously published construction of relevant structures.

Product Details :

Genre : Mathematics
Author : Kenji Fukaya
Publisher : Springer Nature
Release : 2020-10-16
File : 638 Pages
ISBN-13 : 9789811555626


Geometry And Topology Of Manifolds

eBook Download

BOOK EXCERPT:

Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger–Yau–Zaslow conjecture on mirror symmetry, the relative Yau–Tian–Donaldson conjecture in Kähler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists.The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, symplectic and contact geometry, and complex geometry.

Product Details :

Genre : Mathematics
Author : Akito Futaki
Publisher : Springer
Release : 2016-06-03
File : 350 Pages
ISBN-13 : 9784431560210


Introduction To Symplectic Topology

eBook Download

BOOK EXCERPT:

Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.

Product Details :

Genre : Mathematics
Author : Dusa McDuff
Publisher : Oxford University Press
Release : 2017-03-16
File : 632 Pages
ISBN-13 : 9780192514011


Lagrangian Intersection Floer Theory

eBook Download

BOOK EXCERPT:

This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.

Product Details :

Genre : Mathematics
Author : Kenji Fukaya
Publisher : American Mathematical Soc.
Release : 2010-06-21
File : 426 Pages
ISBN-13 : 9780821852507


Symplectic Topology And Floer Homology

eBook Download

BOOK EXCERPT:

The first part of a two-volume set offering a systematic explanation of symplectic topology. This volume covers the basic materials of Hamiltonian dynamics and symplectic geometry.

Product Details :

Genre : Mathematics
Author : Yong-Geun Oh
Publisher : Cambridge University Press
Release : 2015-08-27
File : 421 Pages
ISBN-13 : 9781107072459


Spectral Invariants With Bulk Quasi Morphisms And Lagrangian Floer Theory

eBook Download

BOOK EXCERPT:

In this paper the authors first develop various enhancements of the theory of spectral invariants of Hamiltonian Floer homology and of Entov-Polterovich theory of spectral symplectic quasi-states and quasi-morphisms by incorporating bulk deformations, i.e., deformations by ambient cycles of symplectic manifolds, of the Floer homology and quantum cohomology. Essentially the same kind of construction is independently carried out by Usher in a slightly less general context. Then the authors explore various applications of these enhancements to the symplectic topology, especially new construction of symplectic quasi-states, quasi-morphisms and new Lagrangian intersection results on toric and non-toric manifolds. The most novel part of this paper is its use of open-closed Gromov-Witten-Floer theory and its variant involving closed orbits of periodic Hamiltonian system to connect spectral invariants (with bulk deformation), symplectic quasi-states, quasi-morphism to the Lagrangian Floer theory (with bulk deformation). The authors use this open-closed Gromov-Witten-Floer theory to produce new examples. Using the calculation of Lagrangian Floer cohomology with bulk, they produce examples of compact symplectic manifolds which admits uncountably many independent quasi-morphisms . They also obtain a new intersection result for the Lagrangian submanifold in .

Product Details :

Genre : Mathematics
Author : Kenji Fukaya
Publisher : American Mathematical Soc.
Release : 2019-09-05
File : 282 Pages
ISBN-13 : 9781470436254


Virtual Fundamental Cycles In Symplectic Topology

eBook Download

BOOK EXCERPT:

The method of using the moduli space of pseudo-holomorphic curves on a symplectic manifold was introduced by Mikhail Gromov in 1985. From the appearance of Gromov's original paper until today this approach has been the most important tool in global symplectic geometry. To produce numerical invariants of these manifolds using this method requires constructing a fundamental cycle associated with moduli spaces. This volume brings together three approaches to constructing the “virtual” fundamental cycle for the moduli space of pseudo-holomorphic curves. All approaches are based on the idea of local Kuranishi charts for the moduli space. Workers in the field will get a comprehensive understanding of the details of these constructions and the assumptions under which they can be made. These techniques and results will be essential in further applications of this approach to producing invariants of symplectic manifolds.

Product Details :

Genre : Mathematics
Author : John W. Morgan
Publisher : American Mathematical Soc.
Release : 2019-04-12
File : 317 Pages
ISBN-13 : 9781470450144


Arithmetic And Geometry Around Quantization

eBook Download

BOOK EXCERPT:

This volume comprises both research and survey articles originating from the conference on Arithmetic and Geometry around Quantization held in Istanbul in 2006. A wide range of topics related to quantization are covered, thus aiming to give a glimpse of a broad subject in very different perspectives.

Product Details :

Genre : Mathematics
Author : Özgür Ceyhan
Publisher : Springer Science & Business Media
Release : 2010-01-12
File : 295 Pages
ISBN-13 : 9780817648312


Polyfold And Fredholm Theory

eBook Download

BOOK EXCERPT:

This book pioneers a nonlinear Fredholm theory in a general class of spaces called polyfolds. The theory generalizes certain aspects of nonlinear analysis and differential geometry, and combines them with a pinch of category theory to incorporate local symmetries. On the differential geometrical side, the book introduces a large class of `smooth’ spaces and bundles which can have locally varying dimensions (finite or infinite-dimensional). These bundles come with an important class of sections, which display properties reminiscent of classical nonlinear Fredholm theory and allow for implicit function theorems. Within this nonlinear analysis framework, a versatile transversality and perturbation theory is developed to also cover equivariant settings. The theory presented in this book was initiated by the authors between 2007-2010, motivated by nonlinear moduli problems in symplectic geometry. Such problems are usually described locally as nonlinear elliptic systems, and they have to be studied up to a notion of isomorphism. This introduces symmetries, since such a system can be isomorphic to itself in different ways. Bubbling-off phenomena are common and have to be completely understood to produce algebraic invariants. This requires a transversality theory for bubbling-off phenomena in the presence of symmetries. Very often, even in concrete applications, geometric perturbations are not general enough to achieve transversality, and abstract perturbations have to be considered. The theory is already being successfully applied to its intended applications in symplectic geometry, and should find applications to many other areas where partial differential equations, geometry and functional analysis meet. Written by its originators, Polyfold and Fredholm Theory is an authoritative and comprehensive treatise of polyfold theory. It will prove invaluable for researchers studying nonlinear elliptic problems arising in geometric contexts.

Product Details :

Genre : Mathematics
Author : Helmut Hofer
Publisher : Springer Nature
Release : 2021-07-21
File : 1001 Pages
ISBN-13 : 9783030780074


Lagrangian Floer Theory And Its Deformations

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Yong-Geun Oh
Publisher : Springer Nature
Release :
File : 426 Pages
ISBN-13 : 9789819717989