Latent Curve Models

eBook Download

BOOK EXCERPT:

An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories. The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include: Chapter introductions and summaries that provide a quick overview of highlights Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics Extensive footnoting that points the way to the primary literature for more information on particular topics With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.

Product Details :

Genre : Mathematics
Author : Kenneth A. Bollen
Publisher : John Wiley & Sons
Release : 2006-01-03
File : 308 Pages
ISBN-13 : 9780471746089


Latent Growth Curve Modeling

eBook Download

BOOK EXCERPT:

"Latent Growth Curve Modeling introduces students to a strategy for modeling change over time. This volume offers a unique chance to study this useful research method with easy-to-follow examples of common growth modeling approaches. It addresses ways to fit a variety of advanced statistical models to repeated-measures data, to model change over time, and to assess individual differences in change." "This graduate-level volume is a resource for individual researchers or courses covering longitudinal data analysis, structural equation modeling, developmental methodology, and multivariate techniques."--BOOK JACKET.

Product Details :

Genre : Mathematics
Author : Kristopher J. Preacher
Publisher : SAGE
Release : 2008-06-27
File : 113 Pages
ISBN-13 : 9781412939553


An Introduction To Latent Variable Growth Curve Modeling

eBook Download

BOOK EXCERPT:

This book provides a comprehensive introduction to latent variable growth curve modeling (LGM) for analyzing repeated measures. It presents the statistical basis for LGM and its various methodological extensions, including a number of practical examples of its use. It is designed to take advantage of the reader’s familiarity with analysis of variance and structural equation modeling (SEM) in introducing LGM techniques. Sample data, syntax, input and output, are provided for EQS, Amos, LISREL, and Mplus on the book’s CD. Throughout the book, the authors present a variety of LGM techniques that are useful for many different research designs, and numerous figures provide helpful diagrams of the examples. Updated throughout, the second edition features three new chapters—growth modeling with ordered categorical variables, growth mixture modeling, and pooled interrupted time series LGM approaches. Following a new organization, the book now covers the development of the LGM, followed by chapters on multiple-group issues (analyzing growth in multiple populations, accelerated designs, and multi-level longitudinal approaches), and then special topics such as missing data models, LGM power and Monte Carlo estimation, and latent growth interaction models. The model specifications previously included in the appendices are now available on the CD so the reader can more easily adapt the models to their own research. This practical guide is ideal for a wide range of social and behavioral researchers interested in the measurement of change over time, including social, developmental, organizational, educational, consumer, personality and clinical psychologists, sociologists, and quantitative methodologists, as well as for a text on latent variable growth curve modeling or as a supplement for a course on multivariate statistics. A prerequisite of graduate level statistics is recommended.

Product Details :

Genre : Business & Economics
Author : Terry E. Duncan
Publisher : Routledge
Release : 2013-05-13
File : 274 Pages
ISBN-13 : 9781135601256


Latent Variable Modeling Using R

eBook Download

BOOK EXCERPT:

This step-by-step guide is written for R and latent variable model (LVM) novices. Utilizing a path model approach and focusing on the lavaan package, this book is designed to help readers quickly understand LVMs and their analysis in R. The author reviews the reasoning behind the syntax selected and provides examples that demonstrate how to analyze data for a variety of LVMs. Featuring examples applicable to psychology, education, business, and other social and health sciences, minimal text is devoted to theoretical underpinnings. The material is presented without the use of matrix algebra. As a whole the book prepares readers to write about and interpret LVM results they obtain in R. Each chapter features background information, boldfaced key terms defined in the glossary, detailed interpretations of R output, descriptions of how to write the analysis of results for publication, a summary, R based practice exercises (with solutions included in the back of the book), and references and related readings. Margin notes help readers better understand LVMs and write their own R syntax. Examples using data from published work across a variety of disciplines demonstrate how to use R syntax for analyzing and interpreting results. R functions, syntax, and the corresponding results appear in gray boxes to help readers quickly locate this material. A unique index helps readers quickly locate R functions, packages, and datasets. The book and accompanying website at http://blogs.baylor.edu/rlatentvariable/ provides all of the data for the book’s examples and exercises as well as R syntax so readers can replicate the analyses. The book reviews how to enter the data into R, specify the LVMs, and obtain and interpret the estimated parameter values. The book opens with the fundamentals of using R including how to download the program, use functions, and enter and manipulate data. Chapters 2 and 3 introduce and then extend path models to include latent variables. Chapter 4 shows readers how to analyze a latent variable model with data from more than one group, while Chapter 5 shows how to analyze a latent variable model with data from more than one time period. Chapter 6 demonstrates the analysis of dichotomous variables, while Chapter 7 demonstrates how to analyze LVMs with missing data. Chapter 8 focuses on sample size determination using Monte Carlo methods, which can be used with a wide range of statistical models and account for missing data. The final chapter examines hierarchical LVMs, demonstrating both higher-order and bi-factor approaches. The book concludes with three Appendices: a review of common measures of model fit including their formulae and interpretation; syntax for other R latent variable models packages; and solutions for each chapter’s exercises. Intended as a supplementary text for graduate and/or advanced undergraduate courses on latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, business, economics, and social and health sciences, this book also appeals to researchers in these fields. Prerequisites include familiarity with basic statistical concepts, but knowledge of R is not assumed.

Product Details :

Genre : Psychology
Author : A. Alexander Beaujean
Publisher : Routledge
Release : 2014-05-09
File : 337 Pages
ISBN-13 : 9781317970729


Multilevel Analysis

eBook Download

BOOK EXCERPT:

This practical introduction helps readers apply multilevel techniques to their research. Noted as an accessible introduction, the book also includes advanced extensions, making it useful as both an introduction and as a reference to students, researchers, and methodologists. Basic models and examples are discussed in non-technical terms with an emphasis on understanding the methodological and statistical issues involved in using these models. The estimation and interpretation of multilevel models is demonstrated using realistic examples from various disciplines. For example, readers will find data sets on stress in hospitals, GPA scores, survey responses, street safety, epilepsy, divorce, and sociometric scores, to name a few. The data sets are available on the website in SPSS, HLM, MLwiN, LISREL and/or Mplus files. Readers are introduced to both the multilevel regression model and multilevel structural models. Highlights of the second edition include: Two new chapters—one on multilevel models for ordinal and count data (Ch. 7) and another on multilevel survival analysis (Ch. 8). Thoroughly updated chapters on multilevel structural equation modeling that reflect the enormous technical progress of the last few years. The addition of some simpler examples to help the novice, whilst the more complex examples that combine more than one problem have been retained. A new section on multivariate meta-analysis (Ch. 11). Expanded discussions of covariance structures across time and analyzing longitudinal data where no trend is expected. Expanded chapter on the logistic model for dichotomous data and proportions with new estimation methods. An updated website at http://www.joophox.net/ with data sets for all the text examples and up-to-date screen shots and PowerPoint slides for instructors. Ideal for introductory courses on multilevel modeling and/or ones that introduce this topic in some detail taught in a variety of disciplines including: psychology, education, sociology, the health sciences, and business. The advanced extensions also make this a favorite resource for researchers and methodologists in these disciplines. A basic understanding of ANOVA and multiple regression is assumed. The section on multilevel structural equation models assumes a basic understanding of SEM.

Product Details :

Genre : Education
Author : Joop J. Hox
Publisher : Routledge
Release : 2010-09-13
File : 393 Pages
ISBN-13 : 9781136975356


Current Topics In The Theory And Application Of Latent Variable Models

eBook Download

BOOK EXCERPT:

First Published in 2013. Routledge is an imprint of Taylor & Francis, an informa company.

Product Details :

Genre : Education
Author : Michael Charles Edwards
Publisher : Routledge
Release : 2013
File : 298 Pages
ISBN-13 : 9781848729513


Longitudinal Research With Latent Variables

eBook Download

BOOK EXCERPT:

Since Charles Spearman published his seminal paper on factor analysis in 1904 and Karl Joresk ̈ og replaced the observed variables in an econometric structural equation model by latent factors in 1970, causal modelling by means of latent variables has become the standard in the social and behavioural sciences. Indeed, the central va- ables that social and behavioural theories deal with, can hardly ever be identi?ed as observed variables. Statistical modelling has to take account of measurement - rors and invalidities in the observed variables and so address the underlying latent variables. Moreover, during the past decades it has been widely agreed on that serious causal modelling should be based on longitudinal data. It is especially in the ?eld of longitudinal research and analysis, including panel research, that progress has been made in recent years. Many comprehensive panel data sets as, for example, on human development and voting behaviour have become available for analysis. The number of publications based on longitudinal data has increased immensely. Papers with causal claims based on cross-sectional data only experience rejection just for that reason.

Product Details :

Genre : Mathematics
Author : Kees van Montfort
Publisher : Springer Science & Business Media
Release : 2010-05-17
File : 311 Pages
ISBN-13 : 9783642117602


A New Approach To Evaluating Individual Model Fit In Latent Curve Models

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Young Il Cho
Publisher :
Release : 2009
File : 726 Pages
ISBN-13 : UCAL:X83500


Latent Variable Models

eBook Download

BOOK EXCERPT:

Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis introduces latent variable models by utilizing path diagrams to explain the relationships in the models. This approach helps less mathematically-inclined readers to grasp the underlying relations among path analysis, factor analysis, and structural equation modeling, and to set up and carry out such analyses. This revised and expanded fifth edition again contains key chapters on path analysis, structural equation models, and exploratory factor analysis. In addition, it contains new material on composite reliability, models with categorical data, the minimum average partial procedure, bi-factor models, and communicating about latent variable models. The informal writing style and the numerous illustrative examples make the book accessible to readers of varying backgrounds. Notes at the end of each chapter expand the discussion and provide additional technical detail and references. Moreover, most chapters contain an extended example in which the authors work through one of the chapter’s examples in detail to aid readers in conducting similar analyses with their own data. The book and accompanying website provide all of the data for the book’s examples as well as syntax from latent variable programs so readers can replicate the analyses. The book can be used with any of a variety of computer programs, but special attention is paid to LISREL and R. An important resource for advanced students and researchers in numerous disciplines in the behavioral sciences, education, business, and health sciences, Latent Variable Models is a practical and readable reference for those seeking to understand or conduct an analysis using latent variables.

Product Details :

Genre : Psychology
Author : John C. Loehlin
Publisher : Routledge
Release : 2016-12-07
File : 367 Pages
ISBN-13 : 9781317285274


Longitudinal Models In The Behavioral And Related Sciences

eBook Download

BOOK EXCERPT:

This volume reviews longitudinal models and analysis procedures for use in the behavioral and social sciences. Written by distinguished experts in the field, the book presents the most current approaches and theories, and the technical problems that may be encountered along the way. Readers will find new ideas about the use of longitudinal analysis in solving problems that arise due to the specific nature of the research design and the data available. Longitudinal Models in the Behavioral and Related Sciences opens with the latest theoretical developments. In particular, the book addresses situations that arise due to the categorical nature of the data, issues related to state space modeling, and potential problems that may arise from network analysis and/or growth-curve data. The focus of part two is on the application of longitudinal modeling in a variety of disciplines. The book features applications such as heterogeneity on the patterns of a firm’s profit, on house prices, and on delinquent behavior; non-linearity in growth in assessing cognitive aging; measurement error issues in longitudinal research; and distance association for the analysis of change. Part two clearly demonstrates the caution that should be taken when applying longitudinal modeling as well as in the interpretation of the results. This new volume is ideal for advanced students and researchers in psychology, sociology, education, economics, management, medicine, and neuroscience.

Product Details :

Genre : Education
Author : Kees van Montfort
Publisher : Routledge
Release : 2017-09-29
File : 464 Pages
ISBN-13 : 9781351559751