Machine Learning And Metaheuristic Computation

eBook Download

BOOK EXCERPT:

Learn to bridge the gap between machine learning and metaheuristic methods to solve problems in optimization approaches Few areas of technology have greater potential to revolutionize the globe than artificial intelligence. Two key areas of artificial intelligence, machine learning and metaheuristic computation, have an enormous range of individual and combined applications in computer science and technology. To date, these two complementary paradigms have not always been treated together, despite the potential of a combined approach which maximizes the utility and minimizes the drawbacks of both. Machine Learning and Metaheuristic Computation offers an introduction to both of these approaches and their joint applications. Both a reference text and a course, it is built around the popular Python programming language to maximize utility. It guides the reader gradually from an initial understanding of these crucial methods to an advanced understanding of cutting-edge artificial intelligence tools. The text also provides: Treatment suitable for readers with only basic mathematical training Detailed discussion of topics including dimensionality reduction, clustering methods, differential evolution, and more A rigorous but accessible vision of machine learning algorithms and the most popular approaches of metaheuristic optimization Machine Learning and Metaheuristic Computation is ideal for students, researchers, and professionals looking to combine these vital methods to solve problems in optimization approaches.

Product Details :

Genre : Computers
Author : Erik Cuevas
Publisher : John Wiley & Sons
Release : 2024-12-24
File : 437 Pages
ISBN-13 : 9781394229642


Metaheuristic Computation With Matlab

eBook Download

BOOK EXCERPT:

Metaheuristic algorithms are considered as generic optimization tools that can solve very complex problems characterized by having very large search spaces. Metaheuristic methods reduce the effective size of the search space through the use of effective search strategies. Book Features: Provides a unified view of the most popular metaheuristic methods currently in use Includes the necessary concepts to enable readers to implement and modify already known metaheuristic methods to solve problems Covers design aspects and implementation in MATLAB® Contains numerous examples of problems and solutions that demonstrate the power of these methods of optimization The material has been written from a teaching perspective and, for this reason, this book is primarily intended for undergraduate and postgraduate students of artificial intelligence, metaheuristic methods, and/or evolutionary computation. The objective is to bridge the gap between metaheuristic techniques and complex optimization problems that profit from the convenient properties of metaheuristic approaches. Therefore, engineer practitioners who are not familiar with metaheuristic computation will appreciate that the techniques discussed are beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas.

Product Details :

Genre : Computers
Author : Erik Cuevas
Publisher : CRC Press
Release : 2020-09-14
File : 281 Pages
ISBN-13 : 9781000096514


Machine Learning And Computational Intelligence Techniques For Data Engineering

eBook Download

BOOK EXCERPT:

This book comprises the proceedings of the 4th International Conference on Machine Intelligence and Signal Processing (MISP2022). The contents of this book focus on research advancements in machine intelligence, signal processing, and applications. The book covers the real-time challenges involved while processing big data analytics and stream processing with the integration of smart data computing services and interconnectivity. It also includes the progress in signal processing to process the normal and abnormal categories of real-world signals such as signals generated from IoT devices, smart systems, speech, videos and involves biomedical signal processing: electrocardiogram (ECG), electroencephalogram (EEG), magnetoencephalography (MEG), electromyogram (EMG), etc. This book proves to be a valuable resource for those in academia and industry.

Product Details :

Genre : Technology & Engineering
Author : Pradeep Singh
Publisher : Springer Nature
Release : 2023-05-15
File : 885 Pages
ISBN-13 : 9789819900473


Modeling Analysis And Applications In Metaheuristic Computing Advancements And Trends

eBook Download

BOOK EXCERPT:

"This book is a collection of the latest developments, models, and applications within the transdisciplinary fields related to metaheuristic computing, providing readers with insight into a wide range of topics such as genetic algorithms, differential evolution, and ant colony optimization"--Provided by publisher.

Product Details :

Genre : Computers
Author : Yin, Peng-Yeng
Publisher : IGI Global
Release : 2012-03-31
File : 446 Pages
ISBN-13 : 9781466602717


Advancements In Applied Metaheuristic Computing

eBook Download

BOOK EXCERPT:

Metaheuristic algorithms are present in various applications for different domains. Recently, researchers have conducted studies on the effectiveness of these algorithms in providing optimal solutions to complicated problems. Advancements in Applied Metaheuristic Computing is a crucial reference source for the latest empirical research on methods and approaches that include metaheuristics for further system improvements, and it offers outcomes of employing optimization algorithms. Featuring coverage on a broad range of topics such as manufacturing, genetic programming, and medical imaging, this publication is ideal for researchers, academicians, advanced-level students, and technology developers seeking current research on the use of optimization algorithms in several applications.

Product Details :

Genre : Computers
Author : Dey, Nilanjan
Publisher : IGI Global
Release : 2017-11-30
File : 357 Pages
ISBN-13 : 9781522541523


Metaheuristics For Machine Learning

eBook Download

BOOK EXCERPT:

METAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. You’ll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms.

Product Details :

Genre : Computers
Author : Kanak Kalita
Publisher : John Wiley & Sons
Release : 2024-03-28
File : 272 Pages
ISBN-13 : 9781394233939


Metaheuristic Computation A Performance Perspective

eBook Download

BOOK EXCERPT:

This book is primarily intended for undergraduate and postgraduate students of Science, Electrical Engineering, or Computational Mathematics. Metaheuristic search methods are so numerous and varied in terms of design and potential applications; however, for such an abundant family of optimization techniques, there seems to be a question which needs to be answered: Which part of the design in a metaheuristic algorithm contributes more to its better performance? Several works that compare the performance among metaheuristic approaches have been reported in the literature. Nevertheless, they suffer from one of the following limitations: (A)Their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. (B) Their conclusions consider only the comparison of their final results which cannot evaluate the nature of a good or bad balance between exploration and exploitation. The objective of this book is to compare the performance of various metaheuristic techniques when they are faced with complex optimization problems extracted from different engineering domains. The material has been compiled from a teaching perspective.

Product Details :

Genre : Technology & Engineering
Author : Erik Cuevas
Publisher : Springer Nature
Release : 2020-10-05
File : 281 Pages
ISBN-13 : 9783030581008


Advanced Machine Learning With Evolutionary And Metaheuristic Techniques

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Jayaraman Valadi
Publisher : Springer Nature
Release :
File : 365 Pages
ISBN-13 : 9789819997183


Metaheuristic And Machine Learning Optimization Strategies For Complex Systems

eBook Download

BOOK EXCERPT:

In contemporary engineering domains, optimization and decision-making issues are crucial. Given the vast amounts of available data, processing times and memory usage can be substantial. Developing and implementing novel heuristic algorithms is time-consuming, yet even minor improvements in solutions can significantly reduce computational costs. In such scenarios, the creation of heuristics and metaheuristic algorithms has proven advantageous. The convergence of machine learning and metaheuristic algorithms offers a promising approach to address these challenges. Metaheuristic and Machine Learning Optimization Strategies for Complex Systems covers all areas of comprehensive information about hyper-heuristic models, hybrid meta-heuristic models, nature-inspired computing models, and meta-heuristic models. The key contribution of this book is the construction of a hyper-heuristic approach for any general problem domain from a meta-heuristic algorithm. Covering topics such as cloud computing, internet of things, and performance evaluation, this book is an essential resource for researchers, postgraduate students, educators, data scientists, machine learning engineers, software developers and engineers, policy makers, and more.

Product Details :

Genre : Computers
Author : R., Thanigaivelan
Publisher : IGI Global
Release : 2024-07-17
File : 423 Pages
ISBN-13 : 9798369378441


Machine Learning And Metaheuristic Computation

eBook Download

BOOK EXCERPT:

Learn to bridge the gap between machine learning and metaheuristic methods to solve problems in optimization approaches Few areas of technology have greater potential to revolutionize the globe than artificial intelligence. Two key areas of artificial intelligence, machine learning and metaheuristic computation, have an enormous range of individual and combined applications in computer science and technology. To date, these two complementary paradigms have not always been treated together, despite the potential of a combined approach which maximizes the utility and minimizes the drawbacks of both. Machine Learning and Metaheuristic Computation offers an introduction to both of these approaches and their joint applications. Both a reference text and a course, it is built around the popular Python programming language to maximize utility. It guides the reader gradually from an initial understanding of these crucial methods to an advanced understanding of cutting-edge artificial intelligence tools. The text also provides: Treatment suitable for readers with only basic mathematical training Detailed discussion of topics including dimensionality reduction, clustering methods, differential evolution, and more A rigorous but accessible vision of machine learning algorithms and the most popular approaches of metaheuristic optimization Machine Learning and Metaheuristic Computation is ideal for students, researchers, and professionals looking to combine these vital methods to solve problems in optimization approaches.

Product Details :

Genre : Computers
Author : Erik Cuevas
Publisher : John Wiley & Sons
Release : 2024-11-05
File : 437 Pages
ISBN-13 : 9781394229666