Machine Learning Engineering With Python

eBook Download

BOOK EXCERPT:

Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problems Includes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChain Key Features This second edition delves deeper into key machine learning topics, CI/CD, and system design Explore core MLOps practices, such as model management and performance monitoring Build end-to-end examples of deployable ML microservices and pipelines using AWS and open-source tools Book DescriptionThe Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.What you will learn Plan and manage end-to-end ML development projects Explore deep learning, LLMs, and LLMOps to leverage generative AI Use Python to package your ML tools and scale up your solutions Get to grips with Apache Spark, Kubernetes, and Ray Build and run ML pipelines with Apache Airflow, ZenML, and Kubeflow Detect drift and build retraining mechanisms into your solutions Improve error handling with control flows and vulnerability scanning Host and build ML microservices and batch processes running on AWS Who this book is for This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you’re not a developer but want to manage or understand the product lifecycle of these systems, you’ll also find this book useful. It assumes a basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career.

Product Details :

Genre : Computers
Author : Andrew P. McMahon
Publisher : Packt Publishing Ltd
Release : 2023-08-31
File : 463 Pages
ISBN-13 : 9781837634354


Machine Learning Engineering With Python

eBook Download

BOOK EXCERPT:

Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book DescriptionMachine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.

Product Details :

Genre : Computers
Author : Andrew P. McMahon
Publisher : Packt Publishing Ltd
Release : 2021-11-05
File : 277 Pages
ISBN-13 : 9781801077101


Machine Learning Engineering On Aws

eBook Download

BOOK EXCERPT:

Work seamlessly with production-ready machine learning systems and pipelines on AWS by addressing key pain points encountered in the ML life cycle Key FeaturesGain practical knowledge of managing ML workloads on AWS using Amazon SageMaker, Amazon EKS, and moreUse container and serverless services to solve a variety of ML engineering requirementsDesign, build, and secure automated MLOps pipelines and workflows on AWSBook Description There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you'll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You'll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements. What you will learnFind out how to train and deploy TensorFlow and PyTorch models on AWSUse containers and serverless services for ML engineering requirementsDiscover how to set up a serverless data warehouse and data lake on AWSBuild automated end-to-end MLOps pipelines using a variety of servicesUse AWS Glue DataBrew and SageMaker Data Wrangler for data engineeringExplore different solutions for deploying deep learning models on AWSApply cost optimization techniques to ML environments and systemsPreserve data privacy and model privacy using a variety of techniquesWho this book is for This book is for machine learning engineers, data scientists, and AWS cloud engineers interested in working on production data engineering, machine learning engineering, and MLOps requirements using a variety of AWS services such as Amazon EC2, Amazon Elastic Kubernetes Service (EKS), Amazon SageMaker, AWS Glue, Amazon Redshift, AWS Lake Formation, and AWS Lambda -- all you need is an AWS account to get started. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.

Product Details :

Genre : Computers
Author : Joshua Arvin Lat
Publisher : Packt Publishing Ltd
Release : 2022-10-27
File : 530 Pages
ISBN-13 : 9781803231389


Journey To Become A Google Cloud Machine Learning Engineer

eBook Download

BOOK EXCERPT:

Prepare for the GCP ML certification exam along with exploring cloud computing and machine learning concepts and gaining Google Cloud ML skills Key FeaturesA comprehensive yet easy-to-follow Google Cloud machine learning study guideExplore full-spectrum and step-by-step practice examples to develop hands-on skillsRead through and learn from in-depth discussions of Google ML certification exam questionsBook Description This book aims to provide a study guide to learn and master machine learning in Google Cloud: to build a broad and strong knowledge base, train hands-on skills, and get certified as a Google Cloud Machine Learning Engineer. The book is for someone who has the basic Google Cloud Platform (GCP) knowledge and skills, and basic Python programming skills, and wants to learn machine learning in GCP to take their next step toward becoming a Google Cloud Certified Machine Learning professional. The book starts by laying the foundations of Google Cloud Platform and Python programming, followed the by building blocks of machine learning, then focusing on machine learning in Google Cloud, and finally ends the studying for the Google Cloud Machine Learning certification by integrating all the knowledge and skills together. The book is based on the graduate courses the author has been teaching at the University of Texas at Dallas. When going through the chapters, the reader is expected to study the concepts, complete the exercises, understand and practice the labs in the appendices, and study each exam question thoroughly. Then, at the end of the learning journey, you can expect to harvest the knowledge, skills, and a certificate. What you will learnProvision Google Cloud services related to data science and machine learningProgram with the Python programming language and data science librariesUnderstand machine learning concepts and model development processesExplore deep learning concepts and neural networksBuild, train, and deploy ML models with Google BigQuery ML, Keras, and Google Cloud Vertex AIDiscover the Google Cloud ML Application Programming Interface (API)Prepare to achieve Google Cloud Professional Machine Learning Engineer certificationWho this book is for Anyone from the cloud computing, data analytics, and machine learning domains, such as cloud engineers, data scientists, data engineers, ML practitioners, and engineers, will be able to acquire the knowledge and skills and achieve the Google Cloud professional ML Engineer certification with this study guide. Basic knowledge of Google Cloud Platform and Python programming is required to get the most out of this book.

Product Details :

Genre : Computers
Author : Dr. Logan Song
Publisher : Packt Publishing Ltd
Release : 2022-09-20
File : 330 Pages
ISBN-13 : 9781803239415


A Greater Foundation For Machine Learning Engineering

eBook Download

BOOK EXCERPT:

This research scholarly illustrated book has more than 250 illustrations. The simple models of supervised machine learning with Gaussian Naïve Bayes, Naïve Bayes, decision trees, classification rule learners, linear regression, logistic regression, local polynomial regression, regression trees, model trees, K-nearest neighbors, and support vector machines lay a more excellent foundation for statistics. The author of the book Dr. Ganapathi Pulipaka, a top influencer of machine learning in the US, has created this as a reference book for universities. This book contains an incredible foundation for machine learning and engineering beyond a compact manual. The author goes to extraordinary lengths to make academic machine learning and deep learning literature comprehensible to create a new body of knowledge. The book aims at readership from university students, enterprises, data science beginners, machine learning and deep learning engineers at scale for high-performance computing environments. A Greater Foundation of Machine Learning Engineering covers a broad range of classical linear algebra and calculus with program implementations in PyTorch, TensorFlow, R, and Python with in-depth coverage. The author does not hesitate to go into math equations for each algorithm at length that usually many foundational machine learning books lack leveraging the JupyterLab environment. Newcomers can leverage the book from University or people from all walks of data science or software lives to the advanced practitioners of machine learning and deep learning. Though the book title suggests machine learning, there are several implementations of deep learning algorithms, including deep reinforcement learning. The book's mission is to help build a strong foundation for machine learning and deep learning engineers with all the algorithms, processors to train and deploy into production for enterprise-wide machine learning implementations. This book also introduces all the concepts of natural language processing required for machine learning algorithms in Python. The book covers Bayesian statistics without assuming high-level mathematics or statistics experience from the readers. It delivers the core concepts and implementations required with R code with open datasets. The book also covers unsupervised machine learning algorithms with association rules and k-means clustering, metal-learning algorithms, bagging, boosting, random forests, and ensemble methods. The book delves into the origins of deep learning in a scholarly way covering neural networks, restricted Boltzmann machines, deep belief networks, autoencoders, deep Boltzmann machines, LSTM, and natural language processing techniques with deep learning algorithms and math equations. It leverages the NLTK library of Python with PyTorch, Python, and TensorFlow's installation steps, then demonstrates how to build neural networks with TensorFlow. Deploying machine learning algorithms require a blend of cloud computing platforms, SQL databases, and NoSQL databases. Any data scientist with a statistics background that looks to transition into a machine learning engineer role requires an in-depth understanding of machine learning project implementations on Amazon, Google, or Microsoft Azure cloud computing platforms. The book provides real-world client projects for understanding the complete implementation of machine learning algorithms. This book is a marvel that does not leave any application of machine learning and deep learning algorithms. It sets a more excellent foundation for newcomers and expands the horizons for experienced deep learning practitioners. It is almost inevitable that there will be a series of more advanced algorithms follow-up books from the author in some shape or form after setting such a perfect foundation for machine learning engineering.

Product Details :

Genre : Computers
Author : Dr. Ganapathi Pulipaka
Publisher : Xlibris Corporation
Release : 2021-10-01
File : 382 Pages
ISBN-13 : 9781664151277


Machine Learning Engineering With Mlflow

eBook Download

BOOK EXCERPT:

Get up and running, and productive in no time with MLflow using the most effective machine learning engineering approach Key FeaturesExplore machine learning workflows for stating ML problems in a concise and clear manner using MLflowUse MLflow to iteratively develop a ML model and manage it Discover and work with the features available in MLflow to seamlessly take a model from the development phase to a production environmentBook Description MLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments. This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you'll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins. By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments. What you will learnDevelop your machine learning project locally with MLflow's different featuresSet up a centralized MLflow tracking server to manage multiple MLflow experimentsCreate a model life cycle with MLflow by creating custom modelsUse feature streams to log model results with MLflowDevelop the complete training pipeline infrastructure using MLflow featuresSet up an inference-based API pipeline and batch pipeline in MLflowScale large volumes of data by integrating MLflow with high-performance big data librariesWho this book is for This book is for data scientists, machine learning engineers, and data engineers who want to gain hands-on machine learning engineering experience and learn how they can manage an end-to-end machine learning life cycle with the help of MLflow. Intermediate-level knowledge of the Python programming language is expected.

Product Details :

Genre : Computers
Author : Natu Lauchande
Publisher : Packt Publishing Ltd
Release : 2021-08-27
File : 249 Pages
ISBN-13 : 9781800561694


Developing On Aws With C

eBook Download

BOOK EXCERPT:

Many organizations today have begun to modernize their Windows workloads to take full advantage of cloud economics. If you're a C# developer at one of these companies, you need options for rehosting, replatforming, and refactoring your existing .NET Framework applications. This practical book guides you through the process of converting your monolithic application to microservices on AWS. Authors Noah Gift, founder of Pragmatic AI Labs, and James Charlesworth, engineering manager at Pendo, take you through the depth and breadth of .NET tools on AWS. You'll examine modernization techniques and pathways for incorporating Linux and Windows containers and serverless architecture to build, maintain, and scale modern .NET apps on AWS. With this book, you'll learn how to make your applications more modern, resilient, and cost-effective. Get started building solutions with C# on AWS Learn DevOps best practices for AWS Explore the development tools and services that AWS provides Successfully migrate a legacy .NET application to AWS Develop serverless .NET microservices on AWS Containerize your .NET applications and move into the cloud Monitor and test your AWS .NET applications Build cloud native solutions that combine the best of the .NET platform and AWS

Product Details :

Genre : Computers
Author : Noah Gift
Publisher : "O'Reilly Media, Inc."
Release : 2022-10-04
File : 244 Pages
ISBN-13 : 9781492095835


International Journal Of Engineering Research In Africa Vol 50

eBook Download

BOOK EXCERPT:

The 50th volume of "International Journal of Engineering Research in Africa" contains peer-reviewed manuscripts reflecting the research results in the fields of materials science, applied mechanics and mechanical engineering. Such issues as Steel Reinforcement, Strain Based Approach, Temperature, Thermo-Physical Properties, Vehicle Dynamics, Water Resources are raised in the volume. The presented scientific papers can be appreciated by the majority of engineers, researchers, academic teachers and students majoring in the fields of engineering science.

Product Details :

Genre : Computers
Author : Akii Okonigbon Akaehomen Ibhadode
Publisher : Trans Tech Publications Ltd
Release : 2020-09-25
File : 189 Pages
ISBN-13 : 9783035735161


Is My Phone Reading My Mind

eBook Download

BOOK EXCERPT:

Let Dr Matt explain everything you and your kids need to know about Artificial Intelligence and why you don't need to be afraid! When you think of AI, you might imagine a walking, talking robot or you might think of a giant computer that wants to take over the world, but the reality is that AI is a brilliant human invention that can be found in nearly every modern device from our computers to our cars. AI can seem scary at times, so working out where we use AI and why is an important part of making the best of this exciting technology. So, what is an algorithm and can it help you choose pizza? Can ChatGPT do your homework? And when you watch TV, is it watching you back? All these questions and more about AI are answered in a fun, funny and engaging way. Dr Matt Agnew has a Doctorate in Astrophysics and a Masters in Artificial Intelligence, and believes in making STEM accessible for everyone.

Product Details :

Genre : Juvenile Nonfiction
Author : Matt Agnew
Publisher : Allen & Unwin
Release : 2024-07-30
File : 145 Pages
ISBN-13 : 9781761189258


Maynard S Industrial And Systems Engineering Handbook Sixth Edition

eBook Download

BOOK EXCERPT:

The classic industrial engineering resource—fully updated for the latest advances Brought fully up to date by expert Bopaya M. Bidanda, this go-to handbook contains exhaustive, application-driven coverage of Industrial Engineering (IE) principles, practices, materials, and systems. Featuring contributions from scores of international professionals in the field, Maynard’s Industrial Engineering Handbook, Sixth Edition provides a holistic view of exactly what an Industrial Engineer in today’s world needs to succeed. All-new chapters and sections cover logistics, probability and statistics, supply chains, quality, product design, systems engineering, and engineering management. Coverage includes: Productivity Engineering economics Human factors, ergonomics, and safety Compensation management Facility logistics Planning and scheduling Operations research Statistics and probability Supply chains and quality Product design Manufacturing models and analysis Systems engineering Engineering management The global Industrial Engineer IE application environments

Product Details :

Genre : Technology & Engineering
Author : Bopaya Bidanda
Publisher : McGraw Hill Professional
Release : 2022-09-16
File : 1697 Pages
ISBN-13 : 9781260461572